Files
reddit_stock_analyzer/main.py

112 lines
4.4 KiB
Python

# main.py
import argparse
import json
import os
import time
import praw
import yfinance as yf
from dotenv import load_dotenv
import database
from ticker_extractor import extract_tickers
from sentiment_analyzer import get_sentiment_score # <-- IMPORT OUR NEW MODULE
load_dotenv()
MARKET_CAP_REFRESH_INTERVAL = 86400
# ... (load_subreddits, get_market_cap, get_reddit_instance functions are unchanged)
def load_subreddits(filepath):
# ...
try:
with open(filepath, 'r') as f: return json.load(f).get("subreddits", [])
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading config: {e}")
return None
def get_market_cap(ticker_symbol):
# ...
try:
ticker = yf.Ticker(ticker_symbol)
return ticker.fast_info.get('marketCap')
except Exception: return None
def get_reddit_instance():
# ...
client_id = os.getenv("REDDIT_CLIENT_ID")
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
user_agent = os.getenv("REDDIT_USER_AGENT")
if not all([client_id, client_secret, user_agent]):
print("Error: Reddit API credentials not found.")
return None
return praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent)
def scan_subreddits(reddit, subreddits_list, post_limit=25):
"""Scans subreddits, performs sentiment analysis, and stores results in the database."""
conn = database.get_db_connection()
print(f"\nScanning {len(subreddits_list)} subreddits for top {post_limit} posts...")
for subreddit_name in subreddits_list:
try:
subreddit_id = database.get_or_create_entity(conn, 'subreddits', 'name', subreddit_name)
subreddit = reddit.subreddit(subreddit_name)
print(f"Scanning r/{subreddit_name}...")
for submission in subreddit.hot(limit=post_limit):
# We analyze the title for sentiment as it's often the most concise summary.
# Analyzing all comments could be a future enhancement.
text_to_analyze = submission.title
tickers_in_post = extract_tickers(text_to_analyze + " " + submission.selftext)
# --- NEW: Get sentiment score for the post's title ---
sentiment = get_sentiment_score(text_to_analyze)
for ticker_symbol in set(tickers_in_post):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
# --- NEW: Pass the sentiment score to the database ---
database.add_mention(
conn,
ticker_id=ticker_id,
subreddit_id=subreddit_id,
post_id=submission.id,
timestamp=int(submission.created_utc),
sentiment=sentiment # Pass the score here
)
# (The market cap update logic remains the same)
ticker_info = database.get_ticker_info(conn, ticker_id)
current_time = int(time.time())
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > MARKET_CAP_REFRESH_INTERVAL):
print(f" -> Fetching market cap for {ticker_symbol}...")
market_cap = get_market_cap(ticker_symbol)
database.update_ticker_market_cap(conn, ticker_id, market_cap or ticker_info['market_cap'])
except Exception as e:
print(f"Could not scan r/{subreddit_name}. Error: {e}")
conn.close()
print("\n--- Scan Complete ---")
def main():
# --- IMPORTANT: Delete your old DB file before running! ---
# Since we changed the schema and logic, old data won't have sentiment.
# It's best to start fresh. Delete the `reddit_stocks.db` file now.
parser = argparse.ArgumentParser(description="Analyze stock ticker mentions on Reddit.")
parser.add_argument("config_file", help="Path to the JSON file containing subreddits.")
args = parser.parse_args()
database.initialize_db()
subreddits = load_subreddits(args.config_file)
if not subreddits: return
reddit = get_reddit_instance()
if not reddit: return
scan_subreddits(reddit, subreddits)
database.generate_summary_report()
if __name__ == "__main__":
main()