Files
reddit_stock_analyzer/rstat_tool/database.py
2025-07-25 23:22:37 +02:00

525 lines
19 KiB
Python

# rstat_tool/database.py
import sqlite3
import time
from .ticker_extractor import COMMON_WORDS_BLACKLIST
from .logger_setup import logger as log
from datetime import datetime, timedelta, timezone
DB_FILE = "reddit_stocks.db"
MARKET_CAP_REFRESH_INTERVAL = 86400
def clean_stale_tickers():
"""
Removes tickers and their associated mentions from the database
if the ticker symbol exists in the COMMON_WORDS_BLACKLIST.
"""
log.info("\n--- Cleaning Stale Tickers from Database ---")
conn = get_db_connection()
cursor = conn.cursor()
placeholders = ",".join("?" for _ in COMMON_WORDS_BLACKLIST)
query = f"SELECT id, symbol FROM tickers WHERE symbol IN ({placeholders})"
cursor.execute(query, tuple(COMMON_WORDS_BLACKLIST))
stale_tickers = cursor.fetchall()
if not stale_tickers:
log.info("No stale tickers to clean.")
conn.close()
return
for ticker in stale_tickers:
ticker_id = ticker["id"]
ticker_symbol = ticker["symbol"]
log.info(f"Removing stale ticker '{ticker_symbol}' (ID: {ticker_id})...")
cursor.execute("DELETE FROM mentions WHERE ticker_id = ?", (ticker_id,))
cursor.execute("DELETE FROM tickers WHERE id = ?", (ticker_id,))
deleted_count = conn.total_changes
conn.commit()
conn.close()
log.info(f"Cleanup complete. Removed {deleted_count} records.")
def clean_stale_subreddits(active_subreddits):
"""
Removes all data associated with subreddits that are NOT in the active list.
"""
log.info("\n--- Cleaning Stale Subreddits from Database ---")
conn = get_db_connection()
cursor = conn.cursor()
# Convert the list of active subreddits from the config file to a lowercase set for fast,
# case-insensitive lookups.
active_subreddits_lower = {sub.lower() for sub in active_subreddits}
cursor.execute("SELECT id, name FROM subreddits")
db_subreddits = cursor.fetchall()
stale_sub_ids = []
for sub in db_subreddits:
if sub["name"] not in active_subreddits_lower:
log.info(f"Found stale subreddit to remove: r/{sub['name']}")
stale_sub_ids.append(sub["id"])
if not stale_sub_ids:
log.info("No stale subreddits to clean.")
conn.close()
return
for sub_id in stale_sub_ids:
log.info(f" -> Deleting associated data for subreddit ID: {sub_id}")
cursor.execute("DELETE FROM mentions WHERE subreddit_id = ?", (sub_id,))
cursor.execute("DELETE FROM posts WHERE subreddit_id = ?", (sub_id,))
cursor.execute("DELETE FROM subreddits WHERE id = ?", (sub_id,))
conn.commit()
conn.close()
log.info("Stale subreddit cleanup complete.")
def get_db_connection():
conn = sqlite3.connect(DB_FILE)
conn.row_factory = sqlite3.Row
return conn
def initialize_db():
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS tickers (
id INTEGER PRIMARY KEY AUTOINCREMENT,
symbol TEXT NOT NULL UNIQUE,
market_cap INTEGER,
closing_price REAL,
last_updated INTEGER
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS subreddits (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS mentions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
ticker_id INTEGER,
subreddit_id INTEGER,
post_id TEXT NOT NULL,
mention_type TEXT NOT NULL,
mention_sentiment REAL,
post_avg_sentiment REAL,
mention_timestamp INTEGER NOT NULL,
FOREIGN KEY (ticker_id) REFERENCES tickers (id),
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id)
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS posts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
post_id TEXT NOT NULL UNIQUE,
title TEXT NOT NULL,
post_url TEXT,
subreddit_id INTEGER,
post_timestamp INTEGER,
comment_count INTEGER,
avg_comment_sentiment REAL,
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id)
)
"""
)
conn.commit()
conn.close()
log.info("Database initialized successfully.")
def add_mention(
conn,
ticker_id,
subreddit_id,
post_id,
mention_type,
timestamp,
mention_sentiment,
post_avg_sentiment=None,
):
cursor = conn.cursor()
try:
cursor.execute(
"""
INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_type, mention_timestamp, mention_sentiment, post_avg_sentiment)
VALUES (?, ?, ?, ?, ?, ?, ?)
""",
(
ticker_id,
subreddit_id,
post_id,
mention_type,
timestamp,
mention_sentiment,
post_avg_sentiment,
),
)
conn.commit()
except sqlite3.IntegrityError:
pass
def get_or_create_entity(conn, table_name, column_name, value):
"""Generic function to get or create an entity and return its ID."""
cursor = conn.cursor()
cursor.execute(f"SELECT id FROM {table_name} WHERE {column_name} = ?", (value,))
result = cursor.fetchone()
if result:
return result["id"]
else:
cursor.execute(f"INSERT INTO {table_name} ({column_name}) VALUES (?)", (value,))
conn.commit()
return cursor.lastrowid
def update_ticker_financials(conn, ticker_id, market_cap, closing_price):
"""Updates the financials and timestamp for a specific ticker."""
cursor = conn.cursor()
current_timestamp = int(time.time())
cursor.execute(
"UPDATE tickers SET market_cap = ?, closing_price = ?, last_updated = ? WHERE id = ?",
(market_cap, closing_price, current_timestamp, ticker_id),
)
conn.commit()
def get_ticker_info(conn, ticker_id):
"""Retrieves all info for a specific ticker by its ID."""
cursor = conn.cursor()
cursor.execute("SELECT * FROM tickers WHERE id = ?", (ticker_id,))
return cursor.fetchone()
def get_week_start_end(for_date):
"""
Calculates the start (Monday, 00:00:00) and end (Sunday, 23:59:59)
of the week that a given date falls into.
Returns two datetime objects.
"""
# Monday is 0, Sunday is 6
start_of_week = for_date - timedelta(days=for_date.weekday())
end_of_week = start_of_week + timedelta(days=6)
# Set time to the very beginning and very end of the day for an inclusive range
start_of_week = start_of_week.replace(hour=0, minute=0, second=0, microsecond=0)
end_of_week = end_of_week.replace(hour=23, minute=59, second=59, microsecond=999999)
return start_of_week, end_of_week
def add_or_update_post_analysis(conn, post_data):
"""
Inserts a new post analysis record or updates an existing one.
This prevents duplicate entries for the same post.
"""
cursor = conn.cursor()
# Use the UNIQUE post_id to replace old data with new on conflict
cursor.execute(
"""
INSERT INTO posts (post_id, title, post_url, subreddit_id, post_timestamp, comment_count, avg_comment_sentiment)
VALUES (:post_id, :title, :post_url, :subreddit_id, :post_timestamp, :comment_count, :avg_comment_sentiment)
ON CONFLICT(post_id) DO UPDATE SET
comment_count = excluded.comment_count,
avg_comment_sentiment = excluded.avg_comment_sentiment;
""",
post_data,
)
conn.commit()
def get_overall_summary(limit=10):
"""
Gets the top tickers across all subreddits from the LAST 24 HOURS.
"""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as mention_count,
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
WHERE m.mention_timestamp >= ? -- <-- ADDED TIME FILTER
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY mention_count DESC LIMIT ?;
"""
results = conn.execute(query, (one_day_ago_timestamp, limit)).fetchall()
conn.close()
return results
def get_subreddit_summary(subreddit_name, limit=10):
"""
Gets the top tickers for a specific subreddit from the LAST 24 HOURS.
"""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as mention_count,
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ? -- <-- ADDED TIME FILTER
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY mention_count DESC LIMIT ?;
"""
results = conn.execute(
query, (subreddit_name, one_day_ago_timestamp, limit)
).fetchall()
conn.close()
return results
def get_daily_summary_for_subreddit(subreddit_name):
"""Gets a summary for the DAILY image view (last 24 hours)."""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT
t.symbol, t.market_cap, t.closing_price,
COUNT(m.id) as total_mentions,
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ?
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY total_mentions DESC LIMIT 10;
"""
results = conn.execute(query, (subreddit_name, one_day_ago_timestamp)).fetchall()
conn.close()
return results
def get_weekly_summary_for_subreddit(subreddit_name, for_date):
"""Gets a summary for the WEEKLY image view (full week)."""
conn = get_db_connection()
start_of_week, end_of_week = get_week_start_end(for_date)
start_timestamp = int(start_of_week.timestamp())
end_timestamp = int(end_of_week.timestamp())
query = """
SELECT
t.symbol, t.market_cap, t.closing_price,
COUNT(m.id) as total_mentions,
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp BETWEEN ? AND ?
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY total_mentions DESC LIMIT 10;
"""
results = conn.execute(
query, (subreddit_name, start_timestamp, end_timestamp)
).fetchall()
conn.close()
return results, start_of_week, end_of_week
def get_overall_image_view_summary():
"""
Gets a summary of top tickers across ALL subreddits for the DAILY image view (last 24 hours).
"""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT
t.symbol, t.market_cap, t.closing_price,
COUNT(m.id) as total_mentions,
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
WHERE m.mention_timestamp >= ? -- <-- ADDED TIME FILTER
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY total_mentions DESC LIMIT 10;
"""
results = conn.execute(query, (one_day_ago_timestamp,)).fetchall()
conn.close()
return results
def get_overall_daily_summary():
"""
Gets the top tickers across all subreddits from the LAST 24 HOURS.
(This is a copy of get_overall_summary, renamed for clarity).
"""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as total_mentions,
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
WHERE m.mention_timestamp >= ?
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY total_mentions DESC LIMIT 10;
"""
results = conn.execute(query, (one_day_ago_timestamp,)).fetchall()
conn.close()
return results
def get_overall_weekly_summary():
"""
Gets the top tickers across all subreddits for the LAST 7 DAYS.
"""
conn = get_db_connection()
today = datetime.now(timezone.utc)
start_of_week, end_of_week = get_week_start_end(
today - timedelta(days=7)
) # Get last week's boundaries
start_timestamp = int(start_of_week.timestamp())
end_timestamp = int(end_of_week.timestamp())
query = """
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as total_mentions,
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
WHERE m.mention_timestamp BETWEEN ? AND ?
GROUP BY t.symbol, t.market_cap, t.closing_price
ORDER BY total_mentions DESC LIMIT 10;
"""
results = conn.execute(query, (start_timestamp, end_timestamp)).fetchall()
conn.close()
return results, start_of_week, end_of_week
def get_deep_dive_details(ticker_symbol):
"""Gets all analyzed posts that mention a specific ticker."""
conn = get_db_connection()
query = """
SELECT DISTINCT p.*, s.name as subreddit_name FROM posts p
JOIN mentions m ON p.post_id = m.post_id JOIN tickers t ON m.ticker_id = t.id
JOIN subreddits s ON p.subreddit_id = s.id
WHERE LOWER(t.symbol) = LOWER(?) ORDER BY p.post_timestamp DESC;
"""
results = conn.execute(query, (ticker_symbol,)).fetchall()
conn.close()
return results
def get_all_scanned_subreddits():
"""Gets a unique list of all subreddits we have data for."""
conn = get_db_connection()
results = conn.execute(
"SELECT DISTINCT name FROM subreddits ORDER BY name ASC;"
).fetchall()
conn.close()
return [row["name"] for row in results]
def get_all_tickers():
"""Retrieves the ID and symbol of every ticker in the database."""
conn = get_db_connection()
results = conn.execute("SELECT id, symbol FROM tickers;").fetchall()
conn.close()
return results
def get_ticker_by_symbol(symbol):
"""
Retrieves a single ticker's ID and symbol from the database.
The search is case-insensitive. Returns a Row object or None if not found.
"""
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute(
"SELECT id, symbol FROM tickers WHERE LOWER(symbol) = LOWER(?)", (symbol,)
)
result = cursor.fetchone()
conn.close()
return result
def get_top_daily_ticker_symbols():
"""Gets a simple list of the Top 10 ticker symbols from the last 24 hours."""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT t.symbol FROM mentions m JOIN tickers t ON m.ticker_id = t.id
WHERE m.mention_timestamp >= ?
GROUP BY t.symbol ORDER BY COUNT(m.id) DESC LIMIT 10;
"""
results = conn.execute(query, (one_day_ago_timestamp,)).fetchall()
conn.close()
return [row["symbol"] for row in results] # Return a simple list of strings
def get_top_weekly_ticker_symbols():
"""Gets a simple list of the Top 10 ticker symbols from the last 7 days."""
conn = get_db_connection()
seven_days_ago = datetime.now(timezone.utc) - timedelta(days=7)
seven_days_ago_timestamp = int(seven_days_ago.timestamp())
query = """
SELECT t.symbol FROM mentions m JOIN tickers t ON m.ticker_id = t.id
WHERE m.mention_timestamp >= ?
GROUP BY t.symbol ORDER BY COUNT(m.id) DESC LIMIT 10;
"""
results = conn.execute(query, (seven_days_ago_timestamp,)).fetchall()
conn.close()
return [row["symbol"] for row in results] # Return a simple list of strings
def get_top_daily_ticker_symbols_for_subreddit(subreddit_name):
"""Gets a list of the Top 10 daily ticker symbols for a specific subreddit."""
conn = get_db_connection()
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
one_day_ago_timestamp = int(one_day_ago.timestamp())
query = """
SELECT t.symbol FROM mentions m JOIN tickers t ON m.ticker_id = t.id
JOIN subreddits s ON m.subreddit_id = s.id
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ?
GROUP BY t.symbol ORDER BY COUNT(m.id) DESC LIMIT 10;
"""
results = conn.execute(
query,
(
subreddit_name,
one_day_ago_timestamp,
),
).fetchall()
conn.close()
return [row["symbol"] for row in results]
def get_top_weekly_ticker_symbols_for_subreddit(subreddit_name):
"""Gets a list of the Top 10 weekly ticker symbols for a specific subreddit."""
conn = get_db_connection()
seven_days_ago = datetime.now(timezone.utc) - timedelta(days=7)
seven_days_ago_timestamp = int(seven_days_ago.timestamp())
query = """
SELECT t.symbol FROM mentions m JOIN tickers t ON m.ticker_id = t.id
JOIN subreddits s ON m.subreddit_id = s.id
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ?
GROUP BY t.symbol ORDER BY COUNT(m.id) DESC LIMIT 10;
"""
results = conn.execute(
query,
(
subreddit_name,
seven_days_ago_timestamp,
),
).fetchall()
conn.close()
return [row["symbol"] for row in results]