178 lines
8.7 KiB
Python
178 lines
8.7 KiB
Python
# rstat_tool/main.py
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
|
|
import praw
|
|
import yfinance as yf
|
|
from dotenv import load_dotenv
|
|
|
|
from . import database
|
|
from .ticker_extractor import extract_tickers
|
|
from .sentiment_analyzer import get_sentiment_score
|
|
|
|
load_dotenv()
|
|
MARKET_CAP_REFRESH_INTERVAL = 86400
|
|
POST_AGE_LIMIT = 86400
|
|
|
|
def load_subreddits(filepath):
|
|
try:
|
|
with open(filepath, 'r') as f:
|
|
return json.load(f).get("subreddits", [])
|
|
except (FileNotFoundError, json.JSONDecodeError) as e:
|
|
print(f"Error loading config file '{filepath}': {e}")
|
|
return None
|
|
|
|
def get_financial_data(ticker_symbol):
|
|
try:
|
|
ticker = yf.Ticker(ticker_symbol)
|
|
data = { "market_cap": ticker.fast_info.get('marketCap'), "closing_price": ticker.fast_info.get('previousClose') }
|
|
return data
|
|
except Exception:
|
|
return {"market_cap": None, "closing_price": None}
|
|
|
|
def get_reddit_instance():
|
|
client_id = os.getenv("REDDIT_CLIENT_ID")
|
|
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
|
|
user_agent = os.getenv("REDDIT_USER_AGENT")
|
|
if not all([client_id, client_secret, user_agent]):
|
|
print("Error: Reddit API credentials not found in .env file.")
|
|
return None
|
|
return praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent)
|
|
|
|
def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100, days_to_scan=1):
|
|
"""
|
|
Scans subreddits with a hybrid mention counting logic.
|
|
- If a ticker is in the title, it gets credit for all comments.
|
|
- If not, tickers only get credit for direct mentions in comments.
|
|
"""
|
|
conn = database.get_db_connection()
|
|
post_age_limit = days_to_scan * 86400
|
|
current_time = time.time()
|
|
|
|
print(f"\nScanning {len(subreddits_list)} subreddit(s) for NEW posts in the last {days_to_scan} day(s)...")
|
|
for subreddit_name in subreddits_list:
|
|
try:
|
|
subreddit_id = database.get_or_create_entity(conn, 'subreddits', 'name', subreddit_name)
|
|
subreddit = reddit.subreddit(subreddit_name)
|
|
print(f"Scanning r/{subreddit_name}...")
|
|
|
|
for submission in subreddit.new(limit=post_limit):
|
|
if (current_time - submission.created_utc) > post_age_limit:
|
|
print(f" -> Reached posts older than the {days_to_scan}-day limit.")
|
|
break
|
|
|
|
# --- NEW HYBRID LOGIC ---
|
|
|
|
tickers_in_title = set(extract_tickers(submission.title))
|
|
all_tickers_found_in_post = set(tickers_in_title) # Start a set to track all tickers for financials
|
|
|
|
submission.comments.replace_more(limit=0)
|
|
all_comments = submission.comments.list()[:comment_limit]
|
|
|
|
# --- CASE A: Tickers were found in the title ---
|
|
if tickers_in_title:
|
|
print(f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments.")
|
|
post_sentiment = get_sentiment_score(submission.title)
|
|
|
|
# Add one 'post' mention for each title ticker
|
|
for ticker_symbol in tickers_in_title:
|
|
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'post', int(submission.created_utc), post_sentiment)
|
|
|
|
# Add one 'comment' mention for EACH comment FOR EACH title ticker
|
|
for comment in all_comments:
|
|
comment_sentiment = get_sentiment_score(comment.body)
|
|
for ticker_symbol in tickers_in_title:
|
|
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
|
|
|
# --- CASE B: No tickers in the title, scan comments individually ---
|
|
else:
|
|
for comment in all_comments:
|
|
tickers_in_comment = set(extract_tickers(comment.body))
|
|
if tickers_in_comment:
|
|
all_tickers_found_in_post.update(tickers_in_comment) # Add to our set for financials
|
|
comment_sentiment = get_sentiment_score(comment.body)
|
|
for ticker_symbol in tickers_in_comment:
|
|
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
|
|
|
# --- EFFICIENT FINANCIALS UPDATE ---
|
|
# Now, update market cap once for every unique ticker found in the whole post
|
|
for ticker_symbol in all_tickers_found_in_post:
|
|
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
ticker_info = database.get_ticker_info(conn, ticker_id)
|
|
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > MARKET_CAP_REFRESH_INTERVAL):
|
|
print(f" -> Fetching financial data for {ticker_symbol}...")
|
|
financials = get_financial_data(ticker_symbol)
|
|
database.update_ticker_financials(
|
|
conn, ticker_id,
|
|
financials['market_cap'] or ticker_info['market_cap'],
|
|
financials['closing_price'] or ticker_info['closing_price']
|
|
)
|
|
|
|
# --- DEEP DIVE SAVE (Still valuable) ---
|
|
all_comment_sentiments = [get_sentiment_score(c.body) for c in all_comments]
|
|
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
|
|
post_analysis_data = {
|
|
"post_id": submission.id, "title": submission.title,
|
|
"post_url": f"https://reddit.com{submission.permalink}", "subreddit_id": subreddit_id,
|
|
"post_timestamp": int(submission.created_utc), "comment_count": len(all_comments),
|
|
"avg_comment_sentiment": avg_sentiment
|
|
}
|
|
database.add_or_update_post_analysis(conn, post_analysis_data)
|
|
|
|
except Exception as e:
|
|
print(f"Could not scan r/{subreddit_name}. Error: {e}")
|
|
|
|
conn.close()
|
|
print("\n--- Scan Complete ---")
|
|
|
|
|
|
def main():
|
|
"""Main function to run the Reddit stock analysis tool."""
|
|
parser = argparse.ArgumentParser(description="Analyze stock ticker mentions on Reddit.", formatter_class=argparse.RawTextHelpFormatter)
|
|
|
|
parser.add_argument("-f", "--config", default="subreddits.json", help="Path to the JSON file containing subreddits.\n(Default: subreddits.json)")
|
|
parser.add_argument("-s", "--subreddit", help="Scan a single subreddit, ignoring the config file.")
|
|
parser.add_argument("-d", "--days", type=int, default=1, help="Number of past days to scan for new posts.\n(Default: 1 for last 24 hours)")
|
|
parser.add_argument("-p", "--posts", type=int, default=200, help="Max posts to check per subreddit.\n(Default: 200)")
|
|
parser.add_argument("-c", "--comments", type=int, default=100, help="Number of comments to scan per post.\n(Default: 100)")
|
|
parser.add_argument("-l", "--limit", type=int, default=20, help="Number of tickers to show in the CLI report.\n(Default: 20)")
|
|
args = parser.parse_args()
|
|
|
|
# --- THIS IS THE CORRECTED LOGIC BLOCK ---
|
|
if args.subreddit:
|
|
# If --subreddit is used, create a list with just that one.
|
|
subreddits_to_scan = [args.subreddit]
|
|
print(f"Targeted Scan Mode: Focusing on r/{args.subreddit}")
|
|
else:
|
|
# Otherwise, load from the config file.
|
|
print(f"Config Scan Mode: Loading subreddits from {args.config}")
|
|
# Use the correct argument name: args.config
|
|
subreddits_to_scan = load_subreddits(args.config)
|
|
|
|
if not subreddits_to_scan:
|
|
print("Error: No subreddits to scan. Please check your config file or --subreddit argument.")
|
|
return
|
|
|
|
# --- Initialize and Run ---
|
|
database.initialize_db()
|
|
|
|
reddit = get_reddit_instance()
|
|
if not reddit: return
|
|
|
|
scan_subreddits(
|
|
reddit,
|
|
subreddits_to_scan,
|
|
post_limit=args.posts,
|
|
comment_limit=args.comments,
|
|
days_to_scan=args.days
|
|
)
|
|
database.generate_summary_report(limit=args.limit)
|
|
|
|
if __name__ == "__main__":
|
|
main() |