Files
reddit_stock_analyzer/rstat_tool/main.py
2025-07-21 23:44:27 +02:00

180 lines
8.7 KiB
Python

# rstat_tool/main.py
import argparse
import json
import os
import time
import praw
import yfinance as yf
from dotenv import load_dotenv
from . import database
from .ticker_extractor import extract_tickers
from .sentiment_analyzer import get_sentiment_score
load_dotenv()
MARKET_CAP_REFRESH_INTERVAL = 86400
POST_AGE_LIMIT = 86400
def load_subreddits(filepath):
try:
with open(filepath, 'r') as f:
return json.load(f).get("subreddits", [])
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading config file '{filepath}': {e}")
return None
def get_financial_data(ticker_symbol):
try:
ticker = yf.Ticker(ticker_symbol)
data = { "market_cap": ticker.fast_info.get('marketCap'), "closing_price": ticker.fast_info.get('previousClose') }
return data
except Exception:
return {"market_cap": None, "closing_price": None}
def get_reddit_instance():
client_id = os.getenv("REDDIT_CLIENT_ID")
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
user_agent = os.getenv("REDDIT_USER_AGENT")
if not all([client_id, client_secret, user_agent]):
print("Error: Reddit API credentials not found in .env file.")
return None
return praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent)
def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100, days_to_scan=1):
"""
Scans subreddits with a hybrid mention counting logic.
- If a ticker is in the title, it gets credit for all comments.
- If not, tickers only get credit for direct mentions in comments.
"""
conn = database.get_db_connection()
post_age_limit = days_to_scan * 86400
current_time = time.time()
print(f"\nScanning {len(subreddits_list)} subreddit(s) for NEW posts in the last {days_to_scan} day(s)...")
for subreddit_name in subreddits_list:
try:
subreddit_id = database.get_or_create_entity(conn, 'subreddits', 'name', subreddit_name)
subreddit = reddit.subreddit(subreddit_name)
print(f"Scanning r/{subreddit_name}...")
for submission in subreddit.new(limit=post_limit):
if (current_time - submission.created_utc) > post_age_limit:
print(f" -> Reached posts older than the {days_to_scan}-day limit.")
break
# --- NEW HYBRID LOGIC ---
tickers_in_title = set(extract_tickers(submission.title))
all_tickers_found_in_post = set(tickers_in_title) # Start a set to track all tickers for financials
submission.comments.replace_more(limit=0)
all_comments = submission.comments.list()[:comment_limit]
# --- CASE A: Tickers were found in the title ---
if tickers_in_title:
print(f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments.")
post_sentiment = get_sentiment_score(submission.title)
# Add one 'post' mention for each title ticker
for ticker_symbol in tickers_in_title:
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'post', int(submission.created_utc), post_sentiment)
# Add one 'comment' mention for EACH comment FOR EACH title ticker
for comment in all_comments:
comment_sentiment = get_sentiment_score(comment.body)
for ticker_symbol in tickers_in_title:
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
# --- CASE B: No tickers in the title, scan comments individually ---
else:
for comment in all_comments:
tickers_in_comment = set(extract_tickers(comment.body))
if tickers_in_comment:
all_tickers_found_in_post.update(tickers_in_comment) # Add to our set for financials
comment_sentiment = get_sentiment_score(comment.body)
for ticker_symbol in tickers_in_comment:
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
# --- EFFICIENT FINANCIALS UPDATE ---
# Now, update market cap once for every unique ticker found in the whole post
for ticker_symbol in all_tickers_found_in_post:
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
ticker_info = database.get_ticker_info(conn, ticker_id)
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > MARKET_CAP_REFRESH_INTERVAL):
print(f" -> Fetching financial data for {ticker_symbol}...")
financials = get_financial_data(ticker_symbol)
database.update_ticker_financials(
conn, ticker_id,
financials['market_cap'] or ticker_info['market_cap'],
financials['closing_price'] or ticker_info['closing_price']
)
# --- DEEP DIVE SAVE (Still valuable) ---
all_comment_sentiments = [get_sentiment_score(c.body) for c in all_comments]
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
post_analysis_data = {
"post_id": submission.id, "title": submission.title,
"post_url": f"https://reddit.com{submission.permalink}", "subreddit_id": subreddit_id,
"post_timestamp": int(submission.created_utc), "comment_count": len(all_comments),
"avg_comment_sentiment": avg_sentiment
}
database.add_or_update_post_analysis(conn, post_analysis_data)
except Exception as e:
print(f"Could not scan r/{subreddit_name}. Error: {e}")
conn.close()
print("\n--- Scan Complete ---")
def main():
"""Main function to run the Reddit stock analysis tool."""
parser = argparse.ArgumentParser(description="Analyze stock ticker mentions on Reddit.", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--config", default="subreddits.json", help="Path to the JSON file containing subreddits.\n(Default: subreddits.json)")
parser.add_argument("--subreddit", help="Scan a single subreddit, ignoring the config file.")
parser.add_argument("--days", type=int, default=1, help="Number of past days to scan for new posts.\n(Default: 1 for last 24 hours)")
parser.add_argument("-p", "--posts", type=int, default=200, help="Max posts to check per subreddit.\n(Default: 200)")
parser.add_argument("-c", "--comments", type=int, default=100, help="Number of comments to scan per post.\n(Default: 100)")
parser.add_argument("-l", "--limit", type=int, default=20, help="Number of tickers to show in the CLI report.\n(Default: 20)")
args = parser.parse_args()
# --- THIS IS THE CORRECTED LOGIC BLOCK ---
if args.subreddit:
# If --subreddit is used, create a list with just that one.
subreddits_to_scan = [args.subreddit]
print(f"Targeted Scan Mode: Focusing on r/{args.subreddit}")
else:
# Otherwise, load from the config file.
print(f"Config Scan Mode: Loading subreddits from {args.config}")
# Use the correct argument name: args.config
subreddits_to_scan = load_subreddits(args.config)
if not subreddits_to_scan:
print("Error: No subreddits to scan. Please check your config file or --subreddit argument.")
return
# --- Initialize and Run ---
database.initialize_db()
database.clean_stale_tickers()
reddit = get_reddit_instance()
if not reddit: return
scan_subreddits(
reddit,
subreddits_to_scan,
post_limit=args.posts,
comment_limit=args.comments,
days_to_scan=args.days
)
database.generate_summary_report(limit=args.limit)
if __name__ == "__main__":
main()