Files
reddit_stock_analyzer/rstat_tool/main.py

129 lines
5.9 KiB
Python

# rstat_tool/main.py
import argparse
import json
import os
import time
import praw
import yfinance as yf
from dotenv import load_dotenv
from . import database
from .ticker_extractor import extract_tickers
from .sentiment_analyzer import get_sentiment_score
load_dotenv()
MARKET_CAP_REFRESH_INTERVAL = 86400
def load_subreddits(filepath):
try:
with open(filepath, 'r') as f:
return json.load(f).get("subreddits", [])
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading config: {e}")
return None
def get_market_cap(ticker_symbol):
try:
ticker = yf.Ticker(ticker_symbol)
return ticker.fast_info.get('marketCap')
except Exception:
return None
def get_reddit_instance():
client_id = os.getenv("REDDIT_CLIENT_ID")
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
user_agent = os.getenv("REDDIT_USER_AGENT")
if not all([client_id, client_secret, user_agent]):
print("Error: Reddit API credentials not found in .env file.")
return None
# --- THIS IS THE CORRECTED LINE ---
# The argument is 'client_secret', not 'secret_client'.
return praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent)
def scan_subreddits(reddit, subreddits_list, post_limit=25, comment_limit=100):
"""Scans subreddits, analyzes posts and comments, and stores results in the database."""
conn = database.get_db_connection()
print(f"\nScanning {len(subreddits_list)} subreddits (Top {post_limit} posts, {comment_limit} comments/post)...")
for subreddit_name in subreddits_list:
try:
subreddit_id = database.get_or_create_entity(conn, 'subreddits', 'name', subreddit_name)
subreddit = reddit.subreddit(subreddit_name)
print(f"Scanning r/{subreddit_name}...")
for submission in subreddit.hot(limit=post_limit):
# --- LOGIC PART 1: PROCESS INDIVIDUAL MENTIONS ---
# 1a. Process the Post Title and Body for mentions
post_text = submission.title + " " + submission.selftext
tickers_in_post = extract_tickers(post_text)
post_sentiment = get_sentiment_score(submission.title)
for ticker_symbol in set(tickers_in_post):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, int(submission.created_utc), post_sentiment)
ticker_info = database.get_ticker_info(conn, ticker_id)
current_time = int(time.time())
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > MARKET_CAP_REFRESH_INTERVAL):
print(f" -> Fetching market cap for {ticker_symbol}...")
market_cap = get_market_cap(ticker_symbol)
database.update_ticker_market_cap(conn, ticker_id, market_cap or ticker_info['market_cap'])
# 1b. Process Comments for mentions
submission.comments.replace_more(limit=0)
for comment in submission.comments.list()[:comment_limit]:
tickers_in_comment = extract_tickers(comment.body)
if not tickers_in_comment:
continue
comment_sentiment = get_sentiment_score(comment.body)
for ticker_symbol in set(tickers_in_comment):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, int(comment.created_utc), comment_sentiment)
# --- LOGIC PART 2: DEEP DIVE ANALYSIS ---
all_comment_sentiments = []
for comment in submission.comments.list()[:comment_limit]:
all_comment_sentiments.append(get_sentiment_score(comment.body))
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
post_analysis_data = {
"post_id": submission.id, "title": submission.title,
"post_url": f"https://reddit.com{submission.permalink}",
"subreddit_id": subreddit_id, "post_timestamp": int(submission.created_utc),
"comment_count": len(all_comment_sentiments), "avg_comment_sentiment": avg_sentiment
}
database.add_or_update_post_analysis(conn, post_analysis_data)
except Exception as e:
print(f"Could not scan r/{subreddit_name}. Error: {e}")
conn.close()
print("\n--- Scan Complete ---")
def main():
parser = argparse.ArgumentParser(description="Analyze stock ticker mentions on Reddit.", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("config_file", help="Path to the JSON file containing subreddits.")
parser.add_argument("-p", "--posts", type=int, default=25, help="Number of posts to scan per subreddit.\n(Default: 25)")
parser.add_argument("-c", "--comments", type=int, default=100, help="Number of comments to scan per post.\n(Default: 100)")
parser.add_argument("-l", "--limit", type=int, default=20, help="Number of tickers to show in the final report.\n(Default: 20)")
args = parser.parse_args()
database.initialize_db()
database.clean_stale_tickers()
subreddits = load_subreddits(args.config_file)
if not subreddits: return
reddit = get_reddit_instance()
if not reddit: return
scan_subreddits(reddit, subreddits, post_limit=args.posts, comment_limit=args.comments)
database.generate_summary_report(limit=args.limit)
if __name__ == "__main__":
main()