Files

491 lines
18 KiB
Python

# rstat_tool/main.py
import argparse
import json
import os
import time
import sys
from dotenv import load_dotenv
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
import praw
import yfinance as yf
import pandas as pd
from . import database
from .ticker_extractor import extract_golden_tickers, extract_potential_tickers
from .sentiment_analyzer import get_sentiment_score
from .logger_setup import setup_logging, logger as log
def load_subreddits(filepath):
"""Loads a list of subreddits from a JSON file."""
try:
with open(filepath, "r") as f:
return json.load(f).get("subreddits", [])
except (FileNotFoundError, json.JSONDecodeError) as e:
log.error(f"Error loading config file '{filepath}': {e}")
return None
def get_reddit_instance():
"""Initializes and returns a PRAW Reddit instance."""
env_path = Path(__file__).parent.parent / ".env"
load_dotenv(dotenv_path=env_path)
client_id = os.getenv("REDDIT_CLIENT_ID")
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
user_agent = os.getenv("REDDIT_USER_AGENT")
if not all([client_id, client_secret, user_agent]):
log.error("Error: Reddit API credentials not found in .env file.")
return None
return praw.Reddit(
client_id=client_id, client_secret=client_secret, user_agent=user_agent
)
def fetch_financial_data(ticker_symbol):
"""
Fetches market cap and the most recent closing price for a single ticker.
This function is designed to be thread-safe and robust.
"""
try:
ticker = yf.Ticker(ticker_symbol)
market_cap = ticker.info.get("marketCap")
data = ticker.history(period="2d", auto_adjust=False)
closing_price = None
if not data.empty:
last_close_raw = data["Close"].iloc[-1]
if pd.notna(last_close_raw):
closing_price = float(last_close_raw)
return ticker_symbol, {"market_cap": market_cap, "closing_price": closing_price}
except Exception:
return ticker_symbol, None
def _process_submission(submission, subreddit_id, conn, comment_limit):
"""
Processes a single Reddit submission with a more precise "Golden Ticker" logic.
- If a '$' ticker exists anywhere, the entire submission is in "Golden Only" mode.
- Falls back to potential tickers only if no '$' tickers are found anywhere.
"""
# 1. --- Establish Mode: Golden or Potential ---
# Scan the entire submission (title + selftext) to determine the mode.
post_text_for_discovery = submission.title + " " + submission.selftext
golden_tickers_in_post = extract_golden_tickers(post_text_for_discovery)
is_golden_mode = bool(golden_tickers_in_post)
if is_golden_mode:
log.info(
f" -> Golden Ticker(s) Found: {', '.join(golden_tickers_in_post)}. Engaging Golden-Only Mode."
)
# In Golden Mode, we ONLY care about tickers with a '$'.
tickers_in_title = extract_golden_tickers(submission.title)
else:
log.info(" -> No Golden Tickers. Falling back to potential ticker search.")
# In Potential Mode, we look for any valid-looking capitalized word.
tickers_in_title = extract_potential_tickers(submission.title)
all_tickers_found_in_post = set(tickers_in_title)
ticker_id_cache = {}
# 2. --- Process Title Mentions ---
if tickers_in_title:
log.info(
f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments."
)
post_sentiment = get_sentiment_score(submission.title)
for ticker_symbol in tickers_in_title:
# All title tickers are saved as 'post' type mentions
ticker_id = database.get_or_create_entity(
conn, "tickers", "symbol", ticker_symbol
)
ticker_id_cache[ticker_symbol] = ticker_id
database.add_mention(
conn,
ticker_id,
subreddit_id,
submission.id,
"post",
int(submission.created_utc),
post_sentiment,
comment_id=None,
)
# 3. --- Process Comments (Single, Efficient Loop) ---
submission.comments.replace_more(limit=0)
all_comments = submission.comments.list()[:comment_limit]
for comment in all_comments:
comment_sentiment = get_sentiment_score(comment.body)
if tickers_in_title:
# If the title had tickers, every comment is a mention for them.
# We don't need to scan the comment text for tickers here.
for ticker_symbol in tickers_in_title:
ticker_id = ticker_id_cache[ticker_symbol] # Guaranteed to be in cache
database.add_mention(
conn,
ticker_id,
subreddit_id,
submission.id,
"comment",
int(comment.created_utc),
comment_sentiment,
comment_id=comment.id,
)
else:
# If no title tickers, we must scan the comment for direct mentions.
# The type of ticker we look for depends on the mode.
if is_golden_mode:
# This case is rare (no golden in title, but some in comments) but important.
tickers_in_comment = extract_golden_tickers(comment.body)
else:
tickers_in_comment = extract_potential_tickers(comment.body)
if tickers_in_comment:
all_tickers_found_in_post.update(tickers_in_comment)
for ticker_symbol in tickers_in_comment:
ticker_id = database.get_or_create_entity(
conn, "tickers", "symbol", ticker_symbol
)
database.add_mention(
conn,
ticker_id,
subreddit_id,
submission.id,
"comment",
int(comment.created_utc),
comment_sentiment,
comment_id=comment.id,
)
# 4. --- Save Deep Dive Analysis ---
all_comment_sentiments = [get_sentiment_score(c.body) for c in all_comments]
avg_sentiment = (
sum(all_comment_sentiments) / len(all_comment_sentiments)
if all_comment_sentiments
else 0
)
post_analysis_data = {
"post_id": submission.id,
"title": submission.title,
"post_url": f"https://reddit.com{submission.permalink}",
"subreddit_id": subreddit_id,
"post_timestamp": int(submission.created_utc),
"comment_count": len(all_comments),
"avg_comment_sentiment": avg_sentiment,
}
database.add_or_update_post_analysis(conn, post_analysis_data)
return all_tickers_found_in_post
def scan_subreddits(
reddit,
subreddits_list,
post_limit=100,
comment_limit=100,
days_to_scan=1,
fetch_financials=True,
):
"""
Scans subreddits to discover mentions, then performs a single batch update for financials if enabled.
"""
conn = database.get_db_connection()
post_age_limit = days_to_scan * 86400
current_time = time.time()
all_tickers_to_update = set()
log.info(f"Scanning {len(subreddits_list)} subreddit(s) for NEW posts...")
if not fetch_financials:
log.warning("NOTE: Financial data fetching is disabled for this run.")
for subreddit_name in subreddits_list:
try:
normalized_sub_name = subreddit_name.lower()
subreddit_id = database.get_or_create_entity(
conn, "subreddits", "name", normalized_sub_name
)
subreddit = reddit.subreddit(normalized_sub_name)
log.info(f"Scanning r/{normalized_sub_name}...")
for submission in subreddit.new(limit=post_limit):
if (current_time - submission.created_utc) > post_age_limit:
log.info(
f" -> Reached posts older than the {days_to_scan}-day limit."
)
break
tickers_found = _process_submission(
submission, subreddit_id, conn, comment_limit
)
if tickers_found:
all_tickers_to_update.update(tickers_found)
except Exception as e:
log.error(
f"Could not scan r/{normalized_sub_name}. Error: {e}", exc_info=True
)
conn.close()
log.critical("\n--- Reddit Scan Complete ---")
if fetch_financials and all_tickers_to_update:
log.critical(
f"\n--- Starting Batch Financial Update for {len(all_tickers_to_update)} Discovered Tickers ---"
)
tickers_from_db = {t["symbol"]: t["id"] for t in database.get_all_tickers()}
tickers_needing_update_symbols = [
symbol for symbol in all_tickers_to_update if symbol in tickers_from_db
]
financial_data_batch = {}
with ThreadPoolExecutor(max_workers=10) as executor:
results = executor.map(fetch_financial_data, tickers_needing_update_symbols)
for symbol, data in results:
if data:
financial_data_batch[symbol] = data
if financial_data_batch:
conn = database.get_db_connection()
for symbol, financials in financial_data_batch.items():
database.update_ticker_financials(
conn,
tickers_from_db[symbol],
financials.get("market_cap"),
financials.get("closing_price"),
)
conn.close()
log.critical("--- Batch Financial Update Complete ---")
def main():
"""Main function to run the Reddit stock analysis tool."""
parser = argparse.ArgumentParser(
description="Analyze stock ticker mentions on Reddit.",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"-f",
"--config",
default="subreddits.json",
help="Path to the JSON file for scanning. (Default: subreddits.json)",
)
parser.add_argument(
"-s", "--subreddit", help="Scan a single subreddit, ignoring the config file."
)
parser.add_argument(
"-d",
"--days",
type=int,
default=1,
help="Number of past days to scan for new posts. (Default: 1)",
)
parser.add_argument(
"-p",
"--posts",
type=int,
default=200,
help="Max posts to check per subreddit. (Default: 200)",
)
parser.add_argument(
"-c",
"--comments",
type=int,
default=100,
help="Number of comments to scan per post. (Default: 100)",
)
parser.add_argument(
"-n",
"--no-financials",
action="store_true",
help="Disable fetching of financial data during the Reddit scan.",
)
parser.add_argument(
"--update-top-tickers",
action="store_true",
help="Update financial data only for tickers currently in the Top 10 daily/weekly dashboards.",
)
parser.add_argument(
"-u",
"--update-financials-only",
nargs="?",
const="ALL_TICKERS", # A special value to signify "update all"
default=None,
metavar="TICKER",
help="Update financials. Provide a ticker symbol to update just one,\nor use the flag alone to update all tickers in the database.",
)
parser.add_argument(
"--debug",
action="store_true",
help="Enable detailed debug logging to the console.",
)
parser.add_argument(
"--stdout", action="store_true", help="Print all log messages to the console."
)
args = parser.parse_args()
setup_logging(console_verbose=args.stdout, debug_mode=args.debug)
database.initialize_db()
if args.update_top_tickers:
# --- Mode 1: Update Top Tickers ---
log.critical("--- Starting Financial Data Update for Top Tickers ---")
top_daily = database.get_top_daily_ticker_symbols()
top_weekly = database.get_top_weekly_ticker_symbols()
all_sub_names = database.get_all_scanned_subreddits()
for sub_name in all_sub_names:
top_daily.extend(
database.get_top_daily_ticker_symbols_for_subreddit(sub_name)
)
top_weekly.extend(
database.get_top_weekly_ticker_symbols_for_subreddit(sub_name)
)
tickers_to_update = sorted(list(set(top_daily + top_weekly)))
if not tickers_to_update:
log.info("No top tickers found in the last week. Nothing to update.")
else:
log.info(
f"Found {len(tickers_to_update)} unique top tickers to update. Fetching in parallel..."
)
financial_data_batch = {}
successful_updates = 0
failed_updates = 0
with ThreadPoolExecutor(max_workers=10) as executor:
results = executor.map(fetch_financial_data, tickers_to_update)
for symbol, data in results:
# A successful fetch is one where data is returned and has a closing price
if data and data.get("closing_price") is not None:
log.info(f" -> SUCCESS: Fetched data for {symbol}")
financial_data_batch[symbol] = data
successful_updates += 1
else:
log.warning(
f" -> FAILED: Could not fetch valid financial data for {symbol}"
)
failed_updates += 1
if not financial_data_batch:
log.error("Failed to fetch any batch financial data. Aborting update.")
else:
conn = database.get_db_connection()
all_tickers_from_db = database.get_all_tickers()
ticker_map = {t["symbol"]: t["id"] for t in all_tickers_from_db}
for symbol, financials in financial_data_batch.items():
if symbol in ticker_map:
database.update_ticker_financials(
conn,
ticker_map[symbol],
financials.get("market_cap"),
financials.get("closing_price"),
)
conn.close()
log.critical("--- Top Ticker Financial Data Update Complete ---")
log.critical(f" Successful updates: {successful_updates}")
log.critical(f" Failed updates: {failed_updates}")
elif args.update_financials_only:
# --- Mode 2: Update All or a Single Ticker ---
update_mode = args.update_financials_only
tickers_to_update = []
if update_mode == "ALL_TICKERS":
log.critical("--- Starting Financial Data Update for ALL tickers ---")
all_tickers_from_db = database.get_all_tickers()
tickers_to_update = [t["symbol"] for t in all_tickers_from_db]
else:
ticker_symbol_to_update = update_mode
log.critical(
f"--- Starting Financial Data Update for single ticker: {ticker_symbol_to_update} ---"
)
if database.get_ticker_by_symbol(ticker_symbol_to_update):
tickers_to_update = [ticker_symbol_to_update]
else:
log.error(
f"Ticker '{ticker_symbol_to_update}' not found in the database."
)
if tickers_to_update:
log.info(
f"Found {len(tickers_to_update)} unique tickers to update. Fetching in parallel..."
)
financial_data_batch = {}
successful_updates = 0
failed_updates = 0
with ThreadPoolExecutor(max_workers=10) as executor:
results = executor.map(fetch_financial_data, tickers_to_update)
for symbol, data in results:
# A successful fetch is one where data is returned and has a closing price
if data and data.get("closing_price") is not None:
log.info(f" -> SUCCESS: Fetched data for {symbol}")
financial_data_batch[symbol] = data
successful_updates += 1
else:
log.warning(
f" -> FAILED: Could not fetch valid financial data for {symbol}"
)
failed_updates += 1
if not financial_data_batch:
log.error("Failed to fetch any batch financial data. Aborting update.")
else:
conn = database.get_db_connection()
all_tickers_from_db = database.get_all_tickers()
ticker_map = {t["symbol"]: t["id"] for t in all_tickers_from_db}
for symbol, financials in financial_data_batch.items():
if symbol in ticker_map:
database.update_ticker_financials(
conn,
ticker_map[symbol],
financials.get("market_cap"),
financials.get("closing_price"),
)
conn.close()
log.critical("--- Financial Data Update Complete ---")
log.critical(f" Successful updates: {successful_updates}")
log.critical(f" Failed updates: {failed_updates}")
else:
# --- Mode 3: Default Reddit Scan ---
log.critical("--- Starting Reddit Scan Mode ---")
if args.subreddit:
subreddits_to_scan = [args.subreddit]
log.info(f"Targeted Scan Mode: Focusing on r/{args.subreddit}")
else:
log.info(f"Config Scan Mode: Loading subreddits from {args.config}")
subreddits_to_scan = load_subreddits(args.config)
if not subreddits_to_scan:
log.error("Error: No subreddits to scan.")
return
reddit = get_reddit_instance()
if not reddit:
return
scan_subreddits(
reddit,
subreddits_to_scan,
post_limit=args.posts,
comment_limit=args.comments,
days_to_scan=args.days,
fetch_financials=(not args.no_financials),
)
if __name__ == "__main__":
main()