Sentiment analyzis.
This commit is contained in:
72
database.py
72
database.py
@@ -12,11 +12,13 @@ def get_db_connection():
|
||||
return conn
|
||||
|
||||
def initialize_db():
|
||||
"""Initializes the database and creates tables if they don't exist."""
|
||||
"""
|
||||
Initializes the database and creates the necessary tables if they don't exist.
|
||||
"""
|
||||
conn = get_db_connection()
|
||||
cursor = conn.cursor()
|
||||
|
||||
# --- Create tickers table ---
|
||||
# --- Create tickers table (This is the corrected section) ---
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS tickers (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
@@ -26,7 +28,7 @@ def initialize_db():
|
||||
)
|
||||
""")
|
||||
|
||||
# --- Create subreddits table ---
|
||||
# --- Create subreddits table (This is the corrected section) ---
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS subreddits (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
@@ -34,7 +36,7 @@ def initialize_db():
|
||||
)
|
||||
""")
|
||||
|
||||
# --- Create mentions table ---
|
||||
# --- Create mentions table with sentiment_score column ---
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS mentions (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
@@ -53,12 +55,23 @@ def initialize_db():
|
||||
conn.close()
|
||||
print("Database initialized successfully.")
|
||||
|
||||
def add_mention(conn, ticker_id, subreddit_id, post_id, timestamp, sentiment):
|
||||
"""Adds a new mention with its sentiment score to the database."""
|
||||
cursor = conn.cursor()
|
||||
try:
|
||||
cursor.execute(
|
||||
"INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_timestamp, sentiment_score) VALUES (?, ?, ?, ?, ?)",
|
||||
(ticker_id, subreddit_id, post_id, timestamp, sentiment)
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.IntegrityError:
|
||||
pass # Ignore duplicate mentions
|
||||
|
||||
def get_or_create_entity(conn, table_name, column_name, value):
|
||||
"""Generic function to get or create an entity and return its ID."""
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(f"SELECT id FROM {table_name} WHERE {column_name} = ?", (value,))
|
||||
result = cursor.fetchone()
|
||||
|
||||
if result:
|
||||
return result['id']
|
||||
else:
|
||||
@@ -66,18 +79,6 @@ def get_or_create_entity(conn, table_name, column_name, value):
|
||||
conn.commit()
|
||||
return cursor.lastrowid
|
||||
|
||||
def add_mention(conn, ticker_id, subreddit_id, post_id, timestamp):
|
||||
"""Adds a new mention to the database, ignoring duplicates."""
|
||||
cursor = conn.cursor()
|
||||
try:
|
||||
cursor.execute(
|
||||
"INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_timestamp) VALUES (?, ?, ?, ?)",
|
||||
(ticker_id, subreddit_id, post_id, timestamp)
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.IntegrityError:
|
||||
pass
|
||||
|
||||
def update_ticker_market_cap(conn, ticker_id, market_cap):
|
||||
"""Updates the market cap and timestamp for a specific ticker."""
|
||||
cursor = conn.cursor()
|
||||
@@ -95,7 +96,7 @@ def get_ticker_info(conn, ticker_id):
|
||||
return cursor.fetchone()
|
||||
|
||||
def generate_summary_report():
|
||||
"""Queries the DB to generate and print a summary with market caps."""
|
||||
"""Queries the DB to generate a summary with market caps and avg. sentiment."""
|
||||
print("\n--- Summary Report ---")
|
||||
conn = get_db_connection()
|
||||
cursor = conn.cursor()
|
||||
@@ -104,33 +105,38 @@ def generate_summary_report():
|
||||
SELECT
|
||||
t.symbol,
|
||||
t.market_cap,
|
||||
COUNT(m.id) as mention_count
|
||||
COUNT(m.id) as mention_count,
|
||||
AVG(m.sentiment_score) as avg_sentiment
|
||||
FROM mentions m
|
||||
JOIN tickers t ON m.ticker_id = t.id
|
||||
GROUP BY t.symbol, t.market_cap
|
||||
ORDER BY mention_count DESC
|
||||
LIMIT 20;
|
||||
"""
|
||||
|
||||
results = cursor.execute(query).fetchall()
|
||||
|
||||
print(f"{'Ticker':<10} | {'Mentions':<10} | {'Market Cap':<20}")
|
||||
print("-" * 45)
|
||||
print(f"{'Ticker':<10} | {'Mentions':<10} | {'Sentiment':<18} | {'Market Cap':<20}")
|
||||
print("-" * 65)
|
||||
|
||||
for row in results:
|
||||
# Format Market Cap
|
||||
market_cap_str = "N/A"
|
||||
if row['market_cap']:
|
||||
# Format market cap into a readable string (e.g., $1.23T, $45.6B, $123.4M)
|
||||
if row['market_cap'] and row['market_cap'] > 0:
|
||||
mc = row['market_cap']
|
||||
if mc >= 1e12:
|
||||
market_cap_str = f"${mc/1e12:.2f}T"
|
||||
elif mc >= 1e9:
|
||||
market_cap_str = f"${mc/1e9:.2f}B"
|
||||
elif mc >= 1e6:
|
||||
market_cap_str = f"${mc/1e6:.2f}M"
|
||||
else:
|
||||
market_cap_str = f"${mc:,}"
|
||||
if mc >= 1e12: market_cap_str = f"${mc/1e12:.2f}T"
|
||||
elif mc >= 1e9: market_cap_str = f"${mc/1e9:.2f}B"
|
||||
elif mc >= 1e6: market_cap_str = f"${mc/1e6:.2f}M"
|
||||
else: market_cap_str = f"${mc:,}"
|
||||
|
||||
# Determine Sentiment Label
|
||||
sentiment_score = row['avg_sentiment']
|
||||
if sentiment_score is not None:
|
||||
if sentiment_score > 0.1: sentiment_label = f"Bullish ({sentiment_score:+.2f})"
|
||||
elif sentiment_score < -0.1: sentiment_label = f"Bearish ({sentiment_score:+.2f})"
|
||||
else: sentiment_label = f"Neutral ({sentiment_score:+.2f})"
|
||||
else:
|
||||
sentiment_label = "N/A"
|
||||
|
||||
print(f"{row['symbol']:<10} | {row['mention_count']:<10} | {market_cap_str:<20}")
|
||||
print(f"{row['symbol']:<10} | {row['mention_count']:<10} | {sentiment_label:<18} | {market_cap_str:<20}")
|
||||
|
||||
conn.close()
|
Reference in New Issue
Block a user