Bugfix.
This commit is contained in:
@@ -46,12 +46,12 @@ def initialize_db():
|
||||
ticker_id INTEGER,
|
||||
subreddit_id INTEGER,
|
||||
post_id TEXT NOT NULL,
|
||||
mention_type TEXT NOT NULL, -- Can be 'post' or 'comment'
|
||||
mention_type TEXT NOT NULL,
|
||||
mention_sentiment REAL, -- Renamed from sentiment_score for clarity
|
||||
post_avg_sentiment REAL, -- NEW: Stores the avg sentiment of the whole post
|
||||
mention_timestamp INTEGER NOT NULL,
|
||||
sentiment_score REAL,
|
||||
FOREIGN KEY (ticker_id) REFERENCES tickers (id),
|
||||
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id),
|
||||
UNIQUE(ticker_id, post_id, mention_type, sentiment_score)
|
||||
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id)
|
||||
)
|
||||
""")
|
||||
|
||||
@@ -105,13 +105,69 @@ def clean_stale_tickers():
|
||||
conn.close()
|
||||
print(f"Cleanup complete. Removed {deleted_count} records.")
|
||||
|
||||
def get_db_connection():
|
||||
conn = sqlite3.connect(DB_FILE)
|
||||
conn.row_factory = sqlite3.Row
|
||||
return conn
|
||||
|
||||
def add_mention(conn, ticker_id, subreddit_id, post_id, mention_type, timestamp, sentiment):
|
||||
def initialize_db():
|
||||
conn = get_db_connection()
|
||||
cursor = conn.cursor()
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS tickers (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
symbol TEXT NOT NULL UNIQUE,
|
||||
market_cap INTEGER,
|
||||
closing_price REAL,
|
||||
last_updated INTEGER
|
||||
)
|
||||
""")
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS subreddits (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
name TEXT NOT NULL UNIQUE
|
||||
)
|
||||
""")
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS mentions (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
ticker_id INTEGER,
|
||||
subreddit_id INTEGER,
|
||||
post_id TEXT NOT NULL,
|
||||
mention_type TEXT NOT NULL,
|
||||
mention_sentiment REAL,
|
||||
post_avg_sentiment REAL,
|
||||
mention_timestamp INTEGER NOT NULL,
|
||||
FOREIGN KEY (ticker_id) REFERENCES tickers (id),
|
||||
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id)
|
||||
)
|
||||
""")
|
||||
cursor.execute("""
|
||||
CREATE TABLE IF NOT EXISTS posts (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
post_id TEXT NOT NULL UNIQUE,
|
||||
title TEXT NOT NULL,
|
||||
post_url TEXT,
|
||||
subreddit_id INTEGER,
|
||||
post_timestamp INTEGER,
|
||||
comment_count INTEGER,
|
||||
avg_comment_sentiment REAL,
|
||||
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id)
|
||||
)
|
||||
""")
|
||||
conn.commit()
|
||||
conn.close()
|
||||
print("Database initialized successfully.")
|
||||
|
||||
def add_mention(conn, ticker_id, subreddit_id, post_id, mention_type, timestamp, mention_sentiment, post_avg_sentiment=None):
|
||||
cursor = conn.cursor()
|
||||
try:
|
||||
cursor.execute(
|
||||
"INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_type, mention_timestamp, sentiment_score) VALUES (?, ?, ?, ?, ?, ?)",
|
||||
(ticker_id, subreddit_id, post_id, mention_type, timestamp, sentiment)
|
||||
"""
|
||||
INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_type, mention_timestamp, mention_sentiment, post_avg_sentiment)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
(ticker_id, subreddit_id, post_id, mention_type, timestamp, mention_sentiment, post_avg_sentiment)
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.IntegrityError:
|
||||
@@ -150,19 +206,26 @@ def generate_summary_report(limit=20):
|
||||
print(f"\n--- Top {limit} Tickers by Mention Count ---")
|
||||
conn = get_db_connection()
|
||||
cursor = conn.cursor()
|
||||
|
||||
# --- UPDATED QUERY: Changed m.sentiment_score to m.mention_sentiment ---
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.sentiment_score > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.sentiment_score < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.sentiment_score BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
t.symbol, t.market_cap, t.closing_price,
|
||||
COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
|
||||
GROUP BY t.symbol, t.market_cap ORDER BY mention_count DESC LIMIT ?;
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY mention_count DESC
|
||||
LIMIT ?;
|
||||
"""
|
||||
results = cursor.execute(query, (limit,)).fetchall()
|
||||
header = f"{'Ticker':<8} | {'Mentions':<8} | {'Bullish':<8} | {'Bearish':<8} | {'Neutral':<8} | {'Market Cap':<15}"
|
||||
|
||||
header = f"{'Ticker':<8} | {'Mentions':<8} | {'Bullish':<8} | {'Bearish':<8} | {'Neutral':<8} | {'Market Cap':<15} | {'Close Price':<12}"
|
||||
print(header)
|
||||
print("-" * len(header))
|
||||
print("-" * (len(header) + 2)) # Adjusted separator length
|
||||
|
||||
for row in results:
|
||||
market_cap_str = "N/A"
|
||||
if row['market_cap'] and row['market_cap'] > 0:
|
||||
@@ -170,45 +233,19 @@ def generate_summary_report(limit=20):
|
||||
if mc >= 1e12: market_cap_str = f"${mc/1e12:.2f}T"
|
||||
elif mc >= 1e9: market_cap_str = f"${mc/1e9:.2f}B"
|
||||
else: market_cap_str = f"${mc/1e6:.2f}M"
|
||||
print(f"{row['symbol']:<8} | {row['mention_count']:<8} | {row['bullish_mentions']:<8} | {row['bearish_mentions']:<8} | {row['neutral_mentions']:<8} | {market_cap_str:<15}")
|
||||
conn.close()
|
||||
|
||||
def get_overall_summary(limit=50):
|
||||
conn = get_db_connection()
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price, -- Added closing_price
|
||||
COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.sentiment_score > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.sentiment_score < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.sentiment_score BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price -- Added closing_price
|
||||
ORDER BY mention_count DESC LIMIT ?;
|
||||
"""
|
||||
results = conn.execute(query, (limit,)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
closing_price_str = f"${row['closing_price']:.2f}" if row['closing_price'] else "N/A"
|
||||
|
||||
def get_subreddit_summary(subreddit_name, limit=50):
|
||||
conn = get_db_connection()
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price, -- Added closing_price
|
||||
COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.sentiment_score > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.sentiment_score < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.sentiment_score BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m
|
||||
JOIN tickers t ON m.ticker_id = t.id
|
||||
JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE s.name = ?
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price -- Added closing_price
|
||||
ORDER BY mention_count DESC LIMIT ?;
|
||||
"""
|
||||
results = conn.execute(query, (subreddit_name, limit)).fetchall()
|
||||
print(
|
||||
f"{row['symbol']:<8} | "
|
||||
f"{row['mention_count']:<8} | "
|
||||
f"{row['bullish_mentions']:<8} | "
|
||||
f"{row['bearish_mentions']:<8} | "
|
||||
f"{row['neutral_mentions']:<8} | "
|
||||
f"{market_cap_str:<15} | "
|
||||
f"{closing_price_str:<12}"
|
||||
)
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
def get_all_scanned_subreddits():
|
||||
"""Gets a unique list of all subreddits we have data for."""
|
||||
@@ -253,20 +290,52 @@ def get_deep_dive_details(ticker_symbol):
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
def get_image_view_summary(subreddit_name):
|
||||
"""
|
||||
Gets a summary of tickers for the image view, including post, comment,
|
||||
and sentiment counts.
|
||||
"""
|
||||
def get_overall_summary(limit=50):
|
||||
conn = get_db_connection()
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price,
|
||||
COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY mention_count DESC LIMIT ?;
|
||||
"""
|
||||
results = conn.execute(query, (limit,)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
def get_subreddit_summary(subreddit_name, limit=50):
|
||||
conn = get_db_connection()
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price,
|
||||
COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m
|
||||
JOIN tickers t ON m.ticker_id = t.id
|
||||
JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE s.name = ?
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY mention_count DESC LIMIT ?;
|
||||
"""
|
||||
results = conn.execute(query, (subreddit_name, limit)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
def get_image_view_summary(subreddit_name):
|
||||
conn = get_db_connection()
|
||||
# This query now also counts sentiment types
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol,
|
||||
COUNT(CASE WHEN m.mention_type = 'post' THEN 1 END) as post_mentions,
|
||||
COUNT(CASE WHEN m.mention_type = 'comment' THEN 1 END) as comment_mentions,
|
||||
COUNT(CASE WHEN m.sentiment_score > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.sentiment_score < -0.1 THEN 1 END) as bearish_mentions
|
||||
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
|
||||
FROM mentions m
|
||||
JOIN tickers t ON m.ticker_id = t.id
|
||||
JOIN subreddits s ON m.subreddit_id = s.id
|
||||
@@ -280,23 +349,16 @@ def get_image_view_summary(subreddit_name):
|
||||
return results
|
||||
|
||||
def get_weekly_summary_for_subreddit(subreddit_name):
|
||||
"""
|
||||
Gets a weekly summary for a specific subreddit for the image view.
|
||||
"""
|
||||
conn = get_db_connection()
|
||||
|
||||
# Calculate the timestamp for 7 days ago
|
||||
seven_days_ago = datetime.utcnow() - timedelta(days=7)
|
||||
seven_days_ago_timestamp = int(seven_days_ago.timestamp())
|
||||
|
||||
# The query is the same as before, but with an added WHERE clause for the timestamp
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol,
|
||||
COUNT(CASE WHEN m.mention_type = 'post' THEN 1 END) as post_mentions,
|
||||
COUNT(CASE WHEN m.mention_type = 'comment' THEN 1 END) as comment_mentions,
|
||||
COUNT(CASE WHEN m.sentiment_score > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.sentiment_score < -0.1 THEN 1 END) as bearish_mentions
|
||||
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
|
||||
FROM mentions m
|
||||
JOIN tickers t ON m.ticker_id = t.id
|
||||
JOIN subreddits s ON m.subreddit_id = s.id
|
||||
|
Reference in New Issue
Block a user