Refactor main reddit scraping logic.
This commit is contained in:
@@ -66,8 +66,83 @@ def get_financial_data_via_fetcher(ticker_symbol):
|
|||||||
|
|
||||||
return financials
|
return financials
|
||||||
|
|
||||||
|
# --- HELPER FUNCTION: Contains all the optimized logic for one post ---
|
||||||
|
def _process_submission(submission, subreddit_id, conn, comment_limit, fetch_financials):
|
||||||
|
"""
|
||||||
|
Processes a single Reddit submission with optimized logic.
|
||||||
|
- Uses a single loop over comments.
|
||||||
|
- Caches ticker IDs to reduce DB lookups.
|
||||||
|
"""
|
||||||
|
current_time = time.time()
|
||||||
|
|
||||||
|
# 1. Initialize data collectors for this post
|
||||||
|
tickers_in_title = set(extract_tickers(submission.title))
|
||||||
|
all_tickers_found_in_post = set(tickers_in_title)
|
||||||
|
all_comment_sentiments = []
|
||||||
|
ticker_id_cache = {} # In-memory cache for ticker IDs for this post
|
||||||
|
|
||||||
|
submission.comments.replace_more(limit=0)
|
||||||
|
all_comments = submission.comments.list()[:comment_limit]
|
||||||
|
|
||||||
|
# 2. --- SINGLE LOOP OVER COMMENTS ---
|
||||||
|
# We gather all necessary information in one pass.
|
||||||
|
for comment in all_comments:
|
||||||
|
comment_sentiment = get_sentiment_score(comment.body)
|
||||||
|
all_comment_sentiments.append(comment_sentiment) # For the deep dive
|
||||||
|
|
||||||
|
tickers_in_comment = set(extract_tickers(comment.body))
|
||||||
|
if not tickers_in_comment:
|
||||||
|
continue
|
||||||
|
|
||||||
|
all_tickers_found_in_post.update(tickers_in_comment)
|
||||||
|
|
||||||
|
# Apply the hybrid logic
|
||||||
|
if tickers_in_title:
|
||||||
|
# If the title has tickers, every comment is a mention for them
|
||||||
|
for ticker_symbol in tickers_in_title:
|
||||||
|
if ticker_symbol not in ticker_id_cache:
|
||||||
|
ticker_id_cache[ticker_symbol] = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||||
|
ticker_id = ticker_id_cache[ticker_symbol]
|
||||||
|
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
||||||
|
else:
|
||||||
|
# If no title tickers, only direct mentions in comments count
|
||||||
|
for ticker_symbol in tickers_in_comment:
|
||||||
|
if ticker_symbol not in ticker_id_cache:
|
||||||
|
ticker_id_cache[ticker_symbol] = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||||
|
ticker_id = ticker_id_cache[ticker_symbol]
|
||||||
|
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
||||||
|
|
||||||
|
# 3. Process title mentions (if any)
|
||||||
|
if tickers_in_title:
|
||||||
|
log.info(f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments.")
|
||||||
|
post_sentiment = get_sentiment_score(submission.title)
|
||||||
|
for ticker_symbol in tickers_in_title:
|
||||||
|
if ticker_symbol not in ticker_id_cache:
|
||||||
|
ticker_id_cache[ticker_symbol] = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||||
|
ticker_id = ticker_id_cache[ticker_symbol]
|
||||||
|
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'post', int(submission.created_utc), post_sentiment)
|
||||||
|
|
||||||
|
# 4. Fetch financial data if enabled
|
||||||
|
if fetch_financials:
|
||||||
|
for ticker_symbol in all_tickers_found_in_post:
|
||||||
|
ticker_id = ticker_id_cache[ticker_symbol] # Guaranteed to be in cache
|
||||||
|
ticker_info = database.get_ticker_info(conn, ticker_id)
|
||||||
|
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > database.MARKET_CAP_REFRESH_INTERVAL):
|
||||||
|
log.info(f" -> Fetching financial data for {ticker_symbol}...")
|
||||||
|
financials = get_financial_data_via_fetcher(ticker_symbol)
|
||||||
|
database.update_ticker_financials(conn, ticker_id, financials.get('market_cap'), financials.get('closing_price'))
|
||||||
|
|
||||||
|
# 5. Save deep dive analysis
|
||||||
|
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
|
||||||
|
post_analysis_data = {
|
||||||
|
"post_id": submission.id, "title": submission.title,
|
||||||
|
"post_url": f"https://reddit.com{submission.permalink}", "subreddit_id": subreddit_id,
|
||||||
|
"post_timestamp": int(submission.created_utc), "comment_count": len(all_comments),
|
||||||
|
"avg_comment_sentiment": avg_sentiment
|
||||||
|
}
|
||||||
|
database.add_or_update_post_analysis(conn, post_analysis_data)
|
||||||
|
|
||||||
def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100, days_to_scan=1, fetch_financials=True):
|
def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100, days_to_scan=1, fetch_financials=True):
|
||||||
""" Scans subreddits and uses the fetcher to get financial data. """
|
|
||||||
conn = database.get_db_connection()
|
conn = database.get_db_connection()
|
||||||
post_age_limit = days_to_scan * 86400
|
post_age_limit = days_to_scan * 86400
|
||||||
current_time = time.time()
|
current_time = time.time()
|
||||||
@@ -88,55 +163,8 @@ def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100,
|
|||||||
log.info(f" -> Reached posts older than the {days_to_scan}-day limit.")
|
log.info(f" -> Reached posts older than the {days_to_scan}-day limit.")
|
||||||
break
|
break
|
||||||
|
|
||||||
tickers_in_title = set(extract_tickers(submission.title))
|
# Call the new helper function for each post
|
||||||
all_tickers_found_in_post = set(tickers_in_title)
|
_process_submission(submission, subreddit_id, conn, comment_limit, fetch_financials)
|
||||||
|
|
||||||
submission.comments.replace_more(limit=0)
|
|
||||||
all_comments = submission.comments.list()[:comment_limit]
|
|
||||||
|
|
||||||
if tickers_in_title:
|
|
||||||
log.info(f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments.")
|
|
||||||
post_sentiment = get_sentiment_score(submission.title)
|
|
||||||
for ticker_symbol in tickers_in_title:
|
|
||||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
||||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'post', int(submission.created_utc), post_sentiment)
|
|
||||||
for comment in all_comments:
|
|
||||||
comment_sentiment = get_sentiment_score(comment.body)
|
|
||||||
for ticker_symbol in tickers_in_title:
|
|
||||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
||||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
|
||||||
else:
|
|
||||||
for comment in all_comments:
|
|
||||||
tickers_in_comment = set(extract_tickers(comment.body))
|
|
||||||
if tickers_in_comment:
|
|
||||||
all_tickers_found_in_post.update(tickers_in_comment)
|
|
||||||
comment_sentiment = get_sentiment_score(comment.body)
|
|
||||||
for ticker_symbol in tickers_in_comment:
|
|
||||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
||||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
|
||||||
|
|
||||||
if fetch_financials:
|
|
||||||
for ticker_symbol in all_tickers_found_in_post:
|
|
||||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
|
||||||
ticker_info = database.get_ticker_info(conn, ticker_id)
|
|
||||||
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > database.MARKET_CAP_REFRESH_INTERVAL):
|
|
||||||
log.info(f" -> Fetching financial data for {ticker_symbol}...")
|
|
||||||
financials = get_financial_data_via_fetcher(ticker_symbol)
|
|
||||||
database.update_ticker_financials(
|
|
||||||
conn, ticker_id,
|
|
||||||
financials.get('market_cap'),
|
|
||||||
financials.get('closing_price')
|
|
||||||
)
|
|
||||||
|
|
||||||
all_comment_sentiments = [get_sentiment_score(c.body) for c in all_comments]
|
|
||||||
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
|
|
||||||
post_analysis_data = {
|
|
||||||
"post_id": submission.id, "title": submission.title,
|
|
||||||
"post_url": f"https://reddit.com{submission.permalink}", "subreddit_id": subreddit_id,
|
|
||||||
"post_timestamp": int(submission.created_utc), "comment_count": len(all_comments),
|
|
||||||
"avg_comment_sentiment": avg_sentiment
|
|
||||||
}
|
|
||||||
database.add_or_update_post_analysis(conn, post_analysis_data)
|
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
log.error(f"Could not scan r/{normalized_sub_name}. Error: {e}", exc_info=True)
|
log.error(f"Could not scan r/{normalized_sub_name}. Error: {e}", exc_info=True)
|
||||||
|
Reference in New Issue
Block a user