Refactor main reddit scraping logic.
This commit is contained in:
@@ -66,8 +66,83 @@ def get_financial_data_via_fetcher(ticker_symbol):
|
||||
|
||||
return financials
|
||||
|
||||
# --- HELPER FUNCTION: Contains all the optimized logic for one post ---
|
||||
def _process_submission(submission, subreddit_id, conn, comment_limit, fetch_financials):
|
||||
"""
|
||||
Processes a single Reddit submission with optimized logic.
|
||||
- Uses a single loop over comments.
|
||||
- Caches ticker IDs to reduce DB lookups.
|
||||
"""
|
||||
current_time = time.time()
|
||||
|
||||
# 1. Initialize data collectors for this post
|
||||
tickers_in_title = set(extract_tickers(submission.title))
|
||||
all_tickers_found_in_post = set(tickers_in_title)
|
||||
all_comment_sentiments = []
|
||||
ticker_id_cache = {} # In-memory cache for ticker IDs for this post
|
||||
|
||||
submission.comments.replace_more(limit=0)
|
||||
all_comments = submission.comments.list()[:comment_limit]
|
||||
|
||||
# 2. --- SINGLE LOOP OVER COMMENTS ---
|
||||
# We gather all necessary information in one pass.
|
||||
for comment in all_comments:
|
||||
comment_sentiment = get_sentiment_score(comment.body)
|
||||
all_comment_sentiments.append(comment_sentiment) # For the deep dive
|
||||
|
||||
tickers_in_comment = set(extract_tickers(comment.body))
|
||||
if not tickers_in_comment:
|
||||
continue
|
||||
|
||||
all_tickers_found_in_post.update(tickers_in_comment)
|
||||
|
||||
# Apply the hybrid logic
|
||||
if tickers_in_title:
|
||||
# If the title has tickers, every comment is a mention for them
|
||||
for ticker_symbol in tickers_in_title:
|
||||
if ticker_symbol not in ticker_id_cache:
|
||||
ticker_id_cache[ticker_symbol] = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
ticker_id = ticker_id_cache[ticker_symbol]
|
||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
||||
else:
|
||||
# If no title tickers, only direct mentions in comments count
|
||||
for ticker_symbol in tickers_in_comment:
|
||||
if ticker_symbol not in ticker_id_cache:
|
||||
ticker_id_cache[ticker_symbol] = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
ticker_id = ticker_id_cache[ticker_symbol]
|
||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
||||
|
||||
# 3. Process title mentions (if any)
|
||||
if tickers_in_title:
|
||||
log.info(f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments.")
|
||||
post_sentiment = get_sentiment_score(submission.title)
|
||||
for ticker_symbol in tickers_in_title:
|
||||
if ticker_symbol not in ticker_id_cache:
|
||||
ticker_id_cache[ticker_symbol] = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
ticker_id = ticker_id_cache[ticker_symbol]
|
||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'post', int(submission.created_utc), post_sentiment)
|
||||
|
||||
# 4. Fetch financial data if enabled
|
||||
if fetch_financials:
|
||||
for ticker_symbol in all_tickers_found_in_post:
|
||||
ticker_id = ticker_id_cache[ticker_symbol] # Guaranteed to be in cache
|
||||
ticker_info = database.get_ticker_info(conn, ticker_id)
|
||||
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > database.MARKET_CAP_REFRESH_INTERVAL):
|
||||
log.info(f" -> Fetching financial data for {ticker_symbol}...")
|
||||
financials = get_financial_data_via_fetcher(ticker_symbol)
|
||||
database.update_ticker_financials(conn, ticker_id, financials.get('market_cap'), financials.get('closing_price'))
|
||||
|
||||
# 5. Save deep dive analysis
|
||||
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
|
||||
post_analysis_data = {
|
||||
"post_id": submission.id, "title": submission.title,
|
||||
"post_url": f"https://reddit.com{submission.permalink}", "subreddit_id": subreddit_id,
|
||||
"post_timestamp": int(submission.created_utc), "comment_count": len(all_comments),
|
||||
"avg_comment_sentiment": avg_sentiment
|
||||
}
|
||||
database.add_or_update_post_analysis(conn, post_analysis_data)
|
||||
|
||||
def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100, days_to_scan=1, fetch_financials=True):
|
||||
""" Scans subreddits and uses the fetcher to get financial data. """
|
||||
conn = database.get_db_connection()
|
||||
post_age_limit = days_to_scan * 86400
|
||||
current_time = time.time()
|
||||
@@ -87,56 +162,9 @@ def scan_subreddits(reddit, subreddits_list, post_limit=100, comment_limit=100,
|
||||
if (current_time - submission.created_utc) > post_age_limit:
|
||||
log.info(f" -> Reached posts older than the {days_to_scan}-day limit.")
|
||||
break
|
||||
|
||||
tickers_in_title = set(extract_tickers(submission.title))
|
||||
all_tickers_found_in_post = set(tickers_in_title)
|
||||
|
||||
submission.comments.replace_more(limit=0)
|
||||
all_comments = submission.comments.list()[:comment_limit]
|
||||
|
||||
if tickers_in_title:
|
||||
log.info(f" -> Title Mention(s): {', '.join(tickers_in_title)}. Attributing all comments.")
|
||||
post_sentiment = get_sentiment_score(submission.title)
|
||||
for ticker_symbol in tickers_in_title:
|
||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'post', int(submission.created_utc), post_sentiment)
|
||||
for comment in all_comments:
|
||||
comment_sentiment = get_sentiment_score(comment.body)
|
||||
for ticker_symbol in tickers_in_title:
|
||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
||||
else:
|
||||
for comment in all_comments:
|
||||
tickers_in_comment = set(extract_tickers(comment.body))
|
||||
if tickers_in_comment:
|
||||
all_tickers_found_in_post.update(tickers_in_comment)
|
||||
comment_sentiment = get_sentiment_score(comment.body)
|
||||
for ticker_symbol in tickers_in_comment:
|
||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
database.add_mention(conn, ticker_id, subreddit_id, submission.id, 'comment', int(comment.created_utc), comment_sentiment)
|
||||
|
||||
if fetch_financials:
|
||||
for ticker_symbol in all_tickers_found_in_post:
|
||||
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
|
||||
ticker_info = database.get_ticker_info(conn, ticker_id)
|
||||
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > database.MARKET_CAP_REFRESH_INTERVAL):
|
||||
log.info(f" -> Fetching financial data for {ticker_symbol}...")
|
||||
financials = get_financial_data_via_fetcher(ticker_symbol)
|
||||
database.update_ticker_financials(
|
||||
conn, ticker_id,
|
||||
financials.get('market_cap'),
|
||||
financials.get('closing_price')
|
||||
)
|
||||
|
||||
all_comment_sentiments = [get_sentiment_score(c.body) for c in all_comments]
|
||||
avg_sentiment = sum(all_comment_sentiments) / len(all_comment_sentiments) if all_comment_sentiments else 0
|
||||
post_analysis_data = {
|
||||
"post_id": submission.id, "title": submission.title,
|
||||
"post_url": f"https://reddit.com{submission.permalink}", "subreddit_id": subreddit_id,
|
||||
"post_timestamp": int(submission.created_utc), "comment_count": len(all_comments),
|
||||
"avg_comment_sentiment": avg_sentiment
|
||||
}
|
||||
database.add_or_update_post_analysis(conn, post_analysis_data)
|
||||
# Call the new helper function for each post
|
||||
_process_submission(submission, subreddit_id, conn, comment_limit, fetch_financials)
|
||||
|
||||
except Exception as e:
|
||||
log.error(f"Could not scan r/{normalized_sub_name}. Error: {e}", exc_info=True)
|
||||
|
Reference in New Issue
Block a user