Modularized the tool.

This commit is contained in:
2025-07-21 15:42:55 +02:00
parent 76e95e5373
commit 8f385733ed
5 changed files with 0 additions and 354 deletions

View File

@@ -1,142 +0,0 @@
# database.py
import sqlite3
import time
DB_FILE = "reddit_stocks.db"
def get_db_connection():
"""Establishes a connection to the SQLite database."""
conn = sqlite3.connect(DB_FILE)
conn.row_factory = sqlite3.Row
return conn
def initialize_db():
"""
Initializes the database and creates the necessary tables if they don't exist.
"""
conn = get_db_connection()
cursor = conn.cursor()
# --- Create tickers table (This is the corrected section) ---
cursor.execute("""
CREATE TABLE IF NOT EXISTS tickers (
id INTEGER PRIMARY KEY AUTOINCREMENT,
symbol TEXT NOT NULL UNIQUE,
market_cap INTEGER,
last_updated INTEGER
)
""")
# --- Create subreddits table (This is the corrected section) ---
cursor.execute("""
CREATE TABLE IF NOT EXISTS subreddits (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE
)
""")
# --- Create mentions table with sentiment_score column ---
cursor.execute("""
CREATE TABLE IF NOT EXISTS mentions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
ticker_id INTEGER,
subreddit_id INTEGER,
post_id TEXT NOT NULL,
mention_timestamp INTEGER NOT NULL,
sentiment_score REAL,
FOREIGN KEY (ticker_id) REFERENCES tickers (id),
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id),
UNIQUE(ticker_id, post_id)
)
""")
conn.commit()
conn.close()
print("Database initialized successfully.")
def add_mention(conn, ticker_id, subreddit_id, post_id, timestamp, sentiment):
"""Adds a new mention with its sentiment score to the database."""
cursor = conn.cursor()
try:
cursor.execute(
"INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_timestamp, sentiment_score) VALUES (?, ?, ?, ?, ?)",
(ticker_id, subreddit_id, post_id, timestamp, sentiment)
)
conn.commit()
except sqlite3.IntegrityError:
pass # Ignore duplicate mentions
def get_or_create_entity(conn, table_name, column_name, value):
"""Generic function to get or create an entity and return its ID."""
cursor = conn.cursor()
cursor.execute(f"SELECT id FROM {table_name} WHERE {column_name} = ?", (value,))
result = cursor.fetchone()
if result:
return result['id']
else:
cursor.execute(f"INSERT INTO {table_name} ({column_name}) VALUES (?)", (value,))
conn.commit()
return cursor.lastrowid
def update_ticker_market_cap(conn, ticker_id, market_cap):
"""Updates the market cap and timestamp for a specific ticker."""
cursor = conn.cursor()
current_timestamp = int(time.time())
cursor.execute(
"UPDATE tickers SET market_cap = ?, last_updated = ? WHERE id = ?",
(market_cap, current_timestamp, ticker_id)
)
conn.commit()
def get_ticker_info(conn, ticker_id):
"""Retrieves all info for a specific ticker by its ID."""
cursor = conn.cursor()
cursor.execute("SELECT * FROM tickers WHERE id = ?", (ticker_id,))
return cursor.fetchone()
def generate_summary_report():
"""Queries the DB to generate a summary with market caps and avg. sentiment."""
print("\n--- Summary Report ---")
conn = get_db_connection()
cursor = conn.cursor()
query = """
SELECT
t.symbol,
t.market_cap,
COUNT(m.id) as mention_count,
AVG(m.sentiment_score) as avg_sentiment
FROM mentions m
JOIN tickers t ON m.ticker_id = t.id
GROUP BY t.symbol, t.market_cap
ORDER BY mention_count DESC
LIMIT 20;
"""
results = cursor.execute(query).fetchall()
print(f"{'Ticker':<10} | {'Mentions':<10} | {'Sentiment':<18} | {'Market Cap':<20}")
print("-" * 65)
for row in results:
# Format Market Cap
market_cap_str = "N/A"
if row['market_cap'] and row['market_cap'] > 0:
mc = row['market_cap']
if mc >= 1e12: market_cap_str = f"${mc/1e12:.2f}T"
elif mc >= 1e9: market_cap_str = f"${mc/1e9:.2f}B"
elif mc >= 1e6: market_cap_str = f"${mc/1e6:.2f}M"
else: market_cap_str = f"${mc:,}"
# Determine Sentiment Label
sentiment_score = row['avg_sentiment']
if sentiment_score is not None:
if sentiment_score > 0.1: sentiment_label = f"Bullish ({sentiment_score:+.2f})"
elif sentiment_score < -0.1: sentiment_label = f"Bearish ({sentiment_score:+.2f})"
else: sentiment_label = f"Neutral ({sentiment_score:+.2f})"
else:
sentiment_label = "N/A"
print(f"{row['symbol']:<10} | {row['mention_count']:<10} | {sentiment_label:<18} | {market_cap_str:<20}")
conn.close()

117
main.py
View File

@@ -1,117 +0,0 @@
# main.py
import argparse
import json
import os
import time
import praw
import yfinance as yf
from dotenv import load_dotenv
import database
from ticker_extractor import extract_tickers
from sentiment_analyzer import get_sentiment_score
load_dotenv()
MARKET_CAP_REFRESH_INTERVAL = 86400
# (load_subreddits, get_market_cap, get_reddit_instance functions are unchanged)
def load_subreddits(filepath):
try:
with open(filepath, 'r') as f:
return json.load(f).get("subreddits", [])
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading config: {e}")
return None
def get_market_cap(ticker_symbol):
try:
ticker = yf.Ticker(ticker_symbol)
return ticker.fast_info.get('marketCap')
except Exception:
return None
def get_reddit_instance():
client_id = os.getenv("REDDIT_CLIENT_ID")
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
user_agent = os.getenv("REDDIT_USER_AGENT")
if not all([client_id, client_secret, user_agent]):
print("Error: Reddit API credentials not found.")
return None
return praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent)
# --- UPDATED: Function now accepts post_limit and comment_limit ---
def scan_subreddits(reddit, subreddits_list, post_limit=25, comment_limit=100):
"""Scans subreddits, analyzes posts and comments, and stores results in the database."""
conn = database.get_db_connection()
print(f"\nScanning {len(subreddits_list)} subreddits (Top {post_limit} posts, {comment_limit} comments/post)...")
for subreddit_name in subreddits_list:
try:
subreddit_id = database.get_or_create_entity(conn, 'subreddits', 'name', subreddit_name)
subreddit = reddit.subreddit(subreddit_name)
print(f"Scanning r/{subreddit_name}...")
for submission in subreddit.hot(limit=post_limit):
# --- 1. Process the Post Title and Body ---
post_text = submission.title + " " + submission.selftext
tickers_in_post = extract_tickers(post_text)
post_sentiment = get_sentiment_score(submission.title)
for ticker_symbol in set(tickers_in_post):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, int(submission.created_utc), post_sentiment)
# (Market cap logic remains the same)
ticker_info = database.get_ticker_info(conn, ticker_id)
current_time = int(time.time())
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > MARKET_CAP_REFRESH_INTERVAL):
print(f" -> Fetching market cap for {ticker_symbol}...")
market_cap = get_market_cap(ticker_symbol)
database.update_ticker_market_cap(conn, ticker_id, market_cap or ticker_info['market_cap'])
# --- 2. Process the Comments ---
# Expand "MoreComments" objects. limit=None means we try to get all, but PRAW is protective.
# A limit of 32 is the max PRAW will do in a single call. We'll iterate to be safe.
submission.comments.replace_more(limit=10)
comment_count = 0
for comment in submission.comments.list():
if comment_count >= comment_limit:
break # Stop processing comments for this post if we hit our limit
tickers_in_comment = extract_tickers(comment.body)
if not tickers_in_comment:
continue # Skip comments that don't mention any tickers
comment_sentiment = get_sentiment_score(comment.body)
for ticker_symbol in set(tickers_in_comment):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
# We use the submission.id as the post_id to group mentions correctly
database.add_mention(conn, ticker_id, subreddit_id, submission.id, int(comment.created_utc), comment_sentiment)
comment_count += 1
except Exception as e:
print(f"Could not scan r/{subreddit_name}. Error: {e}")
conn.close()
print("\n--- Scan Complete ---")
def main():
parser = argparse.ArgumentParser(description="Analyze stock ticker mentions on Reddit.")
parser.add_argument("config_file", help="Path to the JSON file containing subreddits.")
args = parser.parse_args()
database.initialize_db()
subreddits = load_subreddits(args.config_file)
if not subreddits: return
reddit = get_reddit_instance()
if not reddit: return
# We now pass the limits to the scan function
scan_subreddits(reddit, subreddits, post_limit=25, comment_limit=100)
database.generate_summary_report()
if __name__ == "__main__":
main()

View File

@@ -1,19 +0,0 @@
# sentiment_analyzer.py
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# Initialize the VADER sentiment intensity analyzer
# We only need to create one instance of this.
_analyzer = SentimentIntensityAnalyzer()
def get_sentiment_score(text):
"""
Analyzes a piece of text and returns its sentiment score.
The 'compound' score is a single metric that summarizes the sentiment.
It ranges from -1 (most negative) to +1 (most positive).
"""
# The polarity_scores() method returns a dictionary with 'neg', 'neu', 'pos', and 'compound' scores.
# We are most interested in the 'compound' score.
scores = _analyzer.polarity_scores(text)
return scores['compound']

View File

@@ -1,11 +0,0 @@
import nltk
# This will download the 'vader_lexicon' dataset
# It only needs to be run once
try:
nltk.data.find('sentiment/vader_lexicon.zip')
print("VADER lexicon is already downloaded.")
except LookupError:
print("Downloading VADER lexicon...")
nltk.download('vader_lexicon')
print("Download complete.")

View File

@@ -1,65 +0,0 @@
# ticker_extractor.py
import re
# A set of common English words and acronyms that look like stock tickers.
# This helps reduce false positives.
COMMON_WORDS_BLACKLIST = {
"401K", "403B", "457B", "ABOVE", "AI", "ALL", "ALPHA", "AMA", "AMEX",
"AND", "ANY", "AR", "ARE", "AROUND", "ASSET", "AT", "ATH", "ATL", "AUD",
"BE", "BEAR", "BELOW", "BETA", "BIG", "BIS", "BLEND", "BOE", "BOJ",
"BOND", "BRB", "BRL", "BTC", "BTW", "BULL", "BUT", "BUY", "BUZZ", "CAD",
"CAN", "CEO", "CFO", "CHF", "CIA", "CNY", "COME", "COST", "COULD", "CPI",
"CTB", "CTO", "CYCLE", "CZK", "DAO", "DATE", "DAX", "DAY", "DCA", "DD",
"DEBT", "DIA", "DIV", "DJIA", "DKK", "DM", "DO", "DOGE", "DR", "EACH",
"EARLY", "EARN", "ECB", "EDGAR", "EDIT", "EPS", "ESG", "ETF", "ETH",
"EU", "EUR", "EV", "EVERY", "FAQ", "FAR", "FAST", "FBI", "FDA", "FIHTX",
"FINRA", "FINT", "FINTX", "FINTY", "FOMC", "FOMO", "FOR", "FRAUD",
"FRG", "FSPSX", "FTSE", "FUD", "FULL", "FUND", "FXAIX", "FXIAX", "FY",
"FYI", "FZROX", "GAIN", "GDP", "GET", "GBP", "GO", "GOAL", "GPU", "GRAB",
"GTG", "HAS", "HAVE", "HATE", "HEAR", "HEDGE", "HINT", "HKD", "HODL",
"HOLD", "HOUR", "HSA", "HUF", "IMHO", "IMO", "IN", "INR", "IPO", "IRA",
"IRS", "IS", "ISM", "IT", "IV", "IVV", "IWM", "JPY", "JUST", "KNOW",
"KRW", "LARGE", "LAST", "LATE", "LATER", "LBO", "LIKE", "LMAO", "LOL",
"LONG", "LOOK", "LOSS", "LOVE", "M&A", "MAKE", "MAX", "MC", "MID", "MIGHT",
"MIN", "ML", "MOASS", "MONTH", "MUST", "MXN", "MY", "NATO", "NEAR",
"NEED", "NEW", "NEXT", "NFA", "NFT", "NGMI", "NIGHT", "NO", "NOK", "NONE",
"NOT", "NOW", "NSA", "NULL", "NZD", "NYSE", "OF", "OK", "OLD", "ON",
"OP", "OR", "OTC", "OUGHT", "OUT", "OVER", "PE", "PEAK", "PEG",
"PLAN", "PLN", "PMI", "PPI", "PRICE", "PROFIT", "PSA", "Q1", "Q2", "Q3",
"Q4", "QQQ", "RBA", "RBNZ", "REIT", "REKT", "RH", "RISK", "ROE", "ROFL",
"ROI", "ROTH", "RSD", "RUB", "SAVE", "SCALP", "SCAM", "SCHB", "SEC",
"SEE", "SEK", "SELL", "SEP", "SGD", "SHALL", "SHARE", "SHORT", "SO",
"SOME", "SOON", "SPAC", "SPEND", "SPLG", "SPX", "SPY", "STILL", "STOCK",
"SWING", "TAKE", "TERM", "THE", "THINK", "THIS", "TIME", "TL", "TL;DR",
"TLDR", "TODAY", "TO", "TOTAL", "TRADE", "TREND", "TRUE", "TRY", "TTYL",
"TWO", "UK", "UNDER", "UP", "US", "USA", "USD", "VTI", "VALUE", "VOO",
"VR", "WAGMI", "WANT", "WATCH", "WAY", "WE", "WEB3", "WEEK", "WHO",
"WHY", "WILL", "WORTH", "WOULD", "WSB", "YET", "YIELD", "YOLO", "YOU",
"ZAR",
"KARMA", "OTM", "ITM", "ATM", "JPOW", "OPEN", "CLOSE", "HIGH", "LOW",
"RE", "BS", "ASAP", "RULE", "REAL", "LIMIT", "STOP", "END", "START", "BOTS",
"UTC", "AH", "PM", "PR", "GMT", "EST", "CST", "PST", "BST", "AEDT", "AEST",
"CET", "CEST", "EDT", "IST", "JST", "MSK", "PDT", "PST", "YES", "NO", "OWN",
"BOMB",
}
def extract_tickers(text):
"""
Extracts potential stock tickers from a given piece of text.
A ticker is identified as a 1-5 character uppercase word, or a word prefixed with $.
"""
# Regex to find potential tickers:
# 1. Words prefixed with $: $AAPL, $TSLA
# 2. All-caps words between 1 and 5 characters: GME, AMC
ticker_regex = r"\$[A-Z]{1,5}\b|\b[A-Z]{2,5}\b"
potential_tickers = re.findall(ticker_regex, text)
# Filter out common words and remove the '$' prefix
tickers = []
for ticker in potential_tickers:
cleaned_ticker = ticker.replace("$", "").upper()
if cleaned_ticker not in COMMON_WORDS_BLACKLIST:
tickers.append(cleaned_ticker)
return tickers