Refactored scraping logic.
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
|
||||
import sqlite3
|
||||
import time
|
||||
from .ticker_extractor import COMMON_WORDS_BLACKLIST
|
||||
from .ticker_extractor import COMMON_WORDS_BLACKLIST, extract_golden_tickers, extract_potential_tickers
|
||||
from .logger_setup import logger as log
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
@@ -203,23 +203,6 @@ def get_ticker_info(conn, ticker_id):
|
||||
return cursor.fetchone()
|
||||
|
||||
|
||||
def get_week_start_end(for_date):
|
||||
"""
|
||||
Calculates the start (Monday, 00:00:00) and end (Sunday, 23:59:59)
|
||||
of the week that a given date falls into.
|
||||
Returns two datetime objects.
|
||||
"""
|
||||
# Monday is 0, Sunday is 6
|
||||
start_of_week = for_date - timedelta(days=for_date.weekday())
|
||||
end_of_week = start_of_week + timedelta(days=6)
|
||||
|
||||
# Set time to the very beginning and very end of the day for an inclusive range
|
||||
start_of_week = start_of_week.replace(hour=0, minute=0, second=0, microsecond=0)
|
||||
end_of_week = end_of_week.replace(hour=23, minute=59, second=59, microsecond=999999)
|
||||
|
||||
return start_of_week, end_of_week
|
||||
|
||||
|
||||
def add_or_update_post_analysis(conn, post_data):
|
||||
"""
|
||||
Inserts a new post analysis record or updates an existing one.
|
||||
@@ -240,127 +223,16 @@ def add_or_update_post_analysis(conn, post_data):
|
||||
conn.commit()
|
||||
|
||||
|
||||
def get_overall_summary(limit=10):
|
||||
"""
|
||||
Gets the top tickers across all subreddits from the LAST 24 HOURS.
|
||||
"""
|
||||
conn = get_db_connection()
|
||||
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
|
||||
one_day_ago_timestamp = int(one_day_ago.timestamp())
|
||||
|
||||
query = """
|
||||
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
|
||||
WHERE m.mention_timestamp >= ? -- <-- ADDED TIME FILTER
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY mention_count DESC LIMIT ?;
|
||||
"""
|
||||
results = conn.execute(query, (one_day_ago_timestamp, limit)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
|
||||
def get_subreddit_summary(subreddit_name, limit=10):
|
||||
"""
|
||||
Gets the top tickers for a specific subreddit from the LAST 24 HOURS.
|
||||
"""
|
||||
conn = get_db_connection()
|
||||
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
|
||||
one_day_ago_timestamp = int(one_day_ago.timestamp())
|
||||
|
||||
query = """
|
||||
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as mention_count,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ? -- <-- ADDED TIME FILTER
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY mention_count DESC LIMIT ?;
|
||||
"""
|
||||
results = conn.execute(
|
||||
query, (subreddit_name, one_day_ago_timestamp, limit)
|
||||
).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
|
||||
def get_daily_summary_for_subreddit(subreddit_name):
|
||||
"""Gets a summary for the DAILY image view (last 24 hours)."""
|
||||
conn = get_db_connection()
|
||||
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
|
||||
one_day_ago_timestamp = int(one_day_ago.timestamp())
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price,
|
||||
COUNT(m.id) as total_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ?
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY total_mentions DESC LIMIT 10;
|
||||
"""
|
||||
results = conn.execute(query, (subreddit_name, one_day_ago_timestamp)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
|
||||
def get_weekly_summary_for_subreddit(subreddit_name, for_date):
|
||||
"""Gets a summary for the WEEKLY image view (full week)."""
|
||||
conn = get_db_connection()
|
||||
start_of_week, end_of_week = get_week_start_end(for_date)
|
||||
start_timestamp = int(start_of_week.timestamp())
|
||||
end_timestamp = int(end_of_week.timestamp())
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price,
|
||||
COUNT(m.id) as total_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp BETWEEN ? AND ?
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY total_mentions DESC LIMIT 10;
|
||||
"""
|
||||
results = conn.execute(
|
||||
query, (subreddit_name, start_timestamp, end_timestamp)
|
||||
).fetchall()
|
||||
conn.close()
|
||||
return results, start_of_week, end_of_week
|
||||
|
||||
|
||||
def get_overall_image_view_summary():
|
||||
"""
|
||||
Gets a summary of top tickers across ALL subreddits for the DAILY image view (last 24 hours).
|
||||
"""
|
||||
conn = get_db_connection()
|
||||
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
|
||||
one_day_ago_timestamp = int(one_day_ago.timestamp())
|
||||
query = """
|
||||
SELECT
|
||||
t.symbol, t.market_cap, t.closing_price,
|
||||
COUNT(m.id) as total_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment > 0.1 THEN 1 END) as bullish_mentions,
|
||||
COUNT(CASE WHEN m.mention_sentiment < -0.1 THEN 1 END) as bearish_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id
|
||||
WHERE m.mention_timestamp >= ? -- <-- ADDED TIME FILTER
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY total_mentions DESC LIMIT 10;
|
||||
"""
|
||||
results = conn.execute(query, (one_day_ago_timestamp,)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
def get_week_start_end(for_date):
|
||||
"""Calculates the start (Monday) and end (Sunday) of the week."""
|
||||
start_of_week = for_date - timedelta(days=for_date.weekday())
|
||||
end_of_week = start_of_week + timedelta(days=6)
|
||||
start_of_week = start_of_week.replace(hour=0, minute=0, second=0, microsecond=0)
|
||||
end_of_week = end_of_week.replace(hour=23, minute=59, second=59, microsecond=999999)
|
||||
return start_of_week, end_of_week
|
||||
|
||||
def get_overall_daily_summary():
|
||||
"""
|
||||
Gets the top tickers across all subreddits from the LAST 24 HOURS.
|
||||
(This is a copy of get_overall_summary, renamed for clarity).
|
||||
"""
|
||||
"""Gets the top tickers across all subreddits from the LAST 24 HOURS."""
|
||||
conn = get_db_connection()
|
||||
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
|
||||
one_day_ago_timestamp = int(one_day_ago.timestamp())
|
||||
@@ -377,16 +249,12 @@ def get_overall_daily_summary():
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
|
||||
def get_overall_weekly_summary():
|
||||
"""
|
||||
Gets the top tickers across all subreddits for the LAST 7 DAYS.
|
||||
"""
|
||||
"""Gets the top tickers across all subreddits for LAST WEEK (Mon-Sun)."""
|
||||
conn = get_db_connection()
|
||||
today = datetime.now(timezone.utc)
|
||||
start_of_week, end_of_week = get_week_start_end(
|
||||
today - timedelta(days=7)
|
||||
) # Get last week's boundaries
|
||||
target_date_for_last_week = today - timedelta(days=7)
|
||||
start_of_week, end_of_week = get_week_start_end(target_date_for_last_week)
|
||||
start_timestamp = int(start_of_week.timestamp())
|
||||
end_timestamp = int(end_of_week.timestamp())
|
||||
query = """
|
||||
@@ -402,6 +270,43 @@ def get_overall_weekly_summary():
|
||||
conn.close()
|
||||
return results, start_of_week, end_of_week
|
||||
|
||||
def get_daily_summary_for_subreddit(subreddit_name):
|
||||
"""Gets a summary for a subreddit's DAILY view (last 24 hours)."""
|
||||
conn = get_db_connection()
|
||||
one_day_ago = datetime.now(timezone.utc) - timedelta(days=1)
|
||||
one_day_ago_timestamp = int(one_day_ago.timestamp())
|
||||
query = """
|
||||
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as total_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp >= ?
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY total_mentions DESC LIMIT 10;
|
||||
"""
|
||||
results = conn.execute(query, (subreddit_name, one_day_ago_timestamp)).fetchall()
|
||||
conn.close()
|
||||
return results
|
||||
|
||||
def get_weekly_summary_for_subreddit(subreddit_name, for_date):
|
||||
"""Gets a summary for a subreddit's WEEKLY view (for a specific week)."""
|
||||
conn = get_db_connection()
|
||||
start_of_week, end_of_week = get_week_start_end(for_date)
|
||||
start_timestamp = int(start_of_week.timestamp())
|
||||
end_timestamp = int(end_of_week.timestamp())
|
||||
query = """
|
||||
SELECT t.symbol, t.market_cap, t.closing_price, COUNT(m.id) as total_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
|
||||
SUM(CASE WHEN m.mention_sentiment < -0.1 THEN 1 ELSE 0 END) as bearish_mentions
|
||||
FROM mentions m JOIN tickers t ON m.ticker_id = t.id JOIN subreddits s ON m.subreddit_id = s.id
|
||||
WHERE LOWER(s.name) = LOWER(?) AND m.mention_timestamp BETWEEN ? AND ?
|
||||
GROUP BY t.symbol, t.market_cap, t.closing_price
|
||||
ORDER BY total_mentions DESC LIMIT 10;
|
||||
"""
|
||||
results = conn.execute(query, (subreddit_name, start_timestamp, end_timestamp)).fetchall()
|
||||
conn.close()
|
||||
return results, start_of_week, end_of_week
|
||||
|
||||
|
||||
def get_deep_dive_details(ticker_symbol):
|
||||
"""Gets all analyzed posts that mention a specific ticker."""
|
||||
|
Reference in New Issue
Block a user