Modularized the tool.

This commit is contained in:
2025-07-21 15:49:15 +02:00
parent 03e6e56a35
commit 71890d1a57
8 changed files with 426 additions and 0 deletions

1
.gitignore vendored
View File

@@ -5,3 +5,4 @@ __pycache__/
*.sqlite3
*.db
*.log
reddit_stock_analyzer.egg-info/

0
rstat_tool/__init__.py Normal file
View File

158
rstat_tool/database.py Normal file
View File

@@ -0,0 +1,158 @@
# rstat_tool/database.py
import sqlite3
import time
# --- IMPORT ADDED BACK IN ---
from .ticker_extractor import COMMON_WORDS_BLACKLIST
DB_FILE = "reddit_stocks.db"
def get_db_connection():
"""Establishes a connection to the SQLite database."""
conn = sqlite3.connect(DB_FILE)
conn.row_factory = sqlite3.Row
return conn
def initialize_db():
# ... (This function is unchanged)
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS tickers (
id INTEGER PRIMARY KEY AUTOINCREMENT,
symbol TEXT NOT NULL UNIQUE,
market_cap INTEGER,
last_updated INTEGER
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS subreddits (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS mentions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
ticker_id INTEGER,
subreddit_id INTEGER,
post_id TEXT NOT NULL,
mention_timestamp INTEGER NOT NULL,
sentiment_score REAL,
FOREIGN KEY (ticker_id) REFERENCES tickers (id),
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id),
UNIQUE(ticker_id, post_id, sentiment_score)
)
""")
conn.commit()
conn.close()
print("Database initialized successfully.")
# --- CLEANUP FUNCTION ADDED BACK IN ---
def clean_stale_tickers():
"""
Removes tickers and their associated mentions from the database
if the ticker symbol exists in the COMMON_WORDS_BLACKLIST.
"""
print("\n--- Cleaning Stale Tickers from Database ---")
conn = get_db_connection()
cursor = conn.cursor()
# Find ticker IDs that match the blacklist
placeholders = ','.join('?' for _ in COMMON_WORDS_BLACKLIST)
query = f"SELECT id, symbol FROM tickers WHERE symbol IN ({placeholders})"
cursor.execute(query, tuple(COMMON_WORDS_BLACKLIST))
stale_tickers = cursor.fetchall()
if not stale_tickers:
print("No stale tickers to clean.")
conn.close()
return
for ticker in stale_tickers:
ticker_id = ticker['id']
ticker_symbol = ticker['symbol']
print(f"Removing stale ticker '{ticker_symbol}' (ID: {ticker_id})...")
# 1. Delete all mentions associated with this ticker ID
cursor.execute("DELETE FROM mentions WHERE ticker_id = ?", (ticker_id,))
# 2. Delete the ticker itself
cursor.execute("DELETE FROM tickers WHERE id = ?", (ticker_id,))
deleted_count = conn.total_changes
conn.commit()
conn.close()
print(f"Cleanup complete. Removed {deleted_count} records.")
def add_mention(conn, ticker_id, subreddit_id, post_id, timestamp, sentiment):
# ... (This function is unchanged)
cursor = conn.cursor()
try:
cursor.execute(
"INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_timestamp, sentiment_score) VALUES (?, ?, ?, ?, ?)",
(ticker_id, subreddit_id, post_id, timestamp, sentiment)
)
conn.commit()
except sqlite3.IntegrityError:
pass
# ... (get_or_create_entity, update_ticker_market_cap, get_ticker_info are unchanged)
def get_or_create_entity(conn, table_name, column_name, value):
# ...
cursor = conn.cursor()
cursor.execute(f"SELECT id FROM {table_name} WHERE {column_name} = ?", (value,))
result = cursor.fetchone()
if result: return result['id']
else:
cursor.execute(f"INSERT INTO {table_name} ({column_name}) VALUES (?)", (value,))
conn.commit()
return cursor.lastrowid
def update_ticker_market_cap(conn, ticker_id, market_cap):
# ...
cursor = conn.cursor()
current_timestamp = int(time.time())
cursor.execute("UPDATE tickers SET market_cap = ?, last_updated = ? WHERE id = ?", (market_cap, current_timestamp, ticker_id))
conn.commit()
def get_ticker_info(conn, ticker_id):
# ...
cursor = conn.cursor()
cursor.execute("SELECT * FROM tickers WHERE id = ?", (ticker_id,))
return cursor.fetchone()
def generate_summary_report(limit=20):
# ... (This function is unchanged)
print(f"\n--- Top {limit} Tickers by Mention Count ---")
conn = get_db_connection()
cursor = conn.cursor()
query = """
SELECT
t.symbol,
t.market_cap,
COUNT(m.id) as mention_count,
SUM(CASE WHEN m.sentiment_score > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
SUM(CASE WHEN m.sentiment_score < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
SUM(CASE WHEN m.sentiment_score BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
FROM mentions m
JOIN tickers t ON m.ticker_id = t.id
GROUP BY t.symbol, t.market_cap
ORDER BY mention_count DESC
LIMIT ?;
"""
results = cursor.execute(query, (limit,)).fetchall()
header = f"{'Ticker':<8} | {'Mentions':<8} | {'Bullish':<8} | {'Bearish':<8} | {'Neutral':<8} | {'Market Cap':<15}"
print(header)
print("-" * len(header))
for row in results:
market_cap_str = "N/A"
if row['market_cap'] and row['market_cap'] > 0:
mc = row['market_cap']
if mc >= 1e12: market_cap_str = f"${mc/1e12:.2f}T"
elif mc >= 1e9: market_cap_str = f"${mc/1e9:.2f}B"
else: market_cap_str = f"${mc/1e6:.2f}M"
print(f"{row['symbol']:<8} | {row['mention_count']:<8} | {row['bullish_mentions']:<8} | {row['bearish_mentions']:<8} | {row['neutral_mentions']:<8} | {market_cap_str:<15}")
conn.close()

149
rstat_tool/main.py Normal file
View File

@@ -0,0 +1,149 @@
# main.py
import argparse
import json
import os
import time
import praw
import yfinance as yf
from dotenv import load_dotenv
# Import local modules
from . import database
from .ticker_extractor import extract_tickers
from .sentiment_analyzer import get_sentiment_score
load_dotenv()
MARKET_CAP_REFRESH_INTERVAL = 86400
# (load_subreddits, get_market_cap, get_reddit_instance functions are unchanged)
def load_subreddits(filepath):
try:
with open(filepath, 'r') as f:
return json.load(f).get("subreddits", [])
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading config: {e}")
return None
def get_market_cap(ticker_symbol):
try:
ticker = yf.Ticker(ticker_symbol)
return ticker.fast_info.get('marketCap')
except Exception:
return None
def get_reddit_instance():
client_id = os.getenv("REDDIT_CLIENT_ID")
client_secret = os.getenv("REDDIT_CLIENT_SECRET")
user_agent = os.getenv("REDDIT_USER_AGENT")
if not all([client_id, client_secret, user_agent]):
print("Error: Reddit API credentials not found.")
return None
return praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent)
# --- UPDATED: Function now accepts post_limit and comment_limit ---
def scan_subreddits(reddit, subreddits_list, post_limit=25, comment_limit=100):
"""Scans subreddits, analyzes posts and comments, and stores results in the database."""
conn = database.get_db_connection()
print(f"\nScanning {len(subreddits_list)} subreddits (Top {post_limit} posts, {comment_limit} comments/post)...")
for subreddit_name in subreddits_list:
try:
subreddit_id = database.get_or_create_entity(conn, 'subreddits', 'name', subreddit_name)
subreddit = reddit.subreddit(subreddit_name)
print(f"Scanning r/{subreddit_name}...")
for submission in subreddit.hot(limit=post_limit):
# --- 1. Process the Post Title and Body ---
post_text = submission.title + " " + submission.selftext
tickers_in_post = extract_tickers(post_text)
post_sentiment = get_sentiment_score(submission.title)
for ticker_symbol in set(tickers_in_post):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
database.add_mention(conn, ticker_id, subreddit_id, submission.id, int(submission.created_utc), post_sentiment)
# (Market cap logic remains the same)
ticker_info = database.get_ticker_info(conn, ticker_id)
current_time = int(time.time())
if not ticker_info['last_updated'] or (current_time - ticker_info['last_updated'] > MARKET_CAP_REFRESH_INTERVAL):
print(f" -> Fetching market cap for {ticker_symbol}...")
market_cap = get_market_cap(ticker_symbol)
database.update_ticker_market_cap(conn, ticker_id, market_cap or ticker_info['market_cap'])
# --- 2. Process the Comments ---
# Expand "MoreComments" objects. limit=None means we try to get all, but PRAW is protective.
# A limit of 32 is the max PRAW will do in a single call. We'll iterate to be safe.
submission.comments.replace_more(limit=10)
comment_count = 0
for comment in submission.comments.list():
if comment_count >= comment_limit:
break # Stop processing comments for this post if we hit our limit
tickers_in_comment = extract_tickers(comment.body)
if not tickers_in_comment:
continue # Skip comments that don't mention any tickers
comment_sentiment = get_sentiment_score(comment.body)
for ticker_symbol in set(tickers_in_comment):
ticker_id = database.get_or_create_entity(conn, 'tickers', 'symbol', ticker_symbol)
# We use the submission.id as the post_id to group mentions correctly
database.add_mention(conn, ticker_id, subreddit_id, submission.id, int(comment.created_utc), comment_sentiment)
comment_count += 1
except Exception as e:
print(f"Could not scan r/{subreddit_name}. Error: {e}")
conn.close()
print("\n--- Scan Complete ---")
def main():
"""Main function to run the Reddit stock analysis tool."""
parser = argparse.ArgumentParser(
description="Analyze stock ticker mentions on Reddit.",
formatter_class=argparse.RawTextHelpFormatter # For better help text formatting
)
# --- Existing Argument ---
parser.add_argument("config_file", help="Path to the JSON file containing subreddits.")
# --- NEW Arguments ---
parser.add_argument(
"-p", "--posts",
type=int,
default=25,
help="Number of posts to scan per subreddit.\n(Default: 25)"
)
parser.add_argument(
"-c", "--comments",
type=int,
default=100,
help="Number of comments to scan per post.\n(Default: 100)"
)
parser.add_argument(
"-l", "--limit",
type=int,
default=20,
help="Number of tickers to show in the final report.\n(Default: 20)"
)
args = parser.parse_args()
# --- Initialize and Run ---
database.initialize_db()
database.clean_stale_tickers()
subreddits = load_subreddits(args.config_file)
if not subreddits: return
reddit = get_reddit_instance()
if not reddit: return
# Pass the command-line arguments to the functions
scan_subreddits(reddit, subreddits, post_limit=args.posts, comment_limit=args.comments)
database.generate_summary_report(limit=args.limit)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,19 @@
# sentiment_analyzer.py
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# Initialize the VADER sentiment intensity analyzer
# We only need to create one instance of this.
_analyzer = SentimentIntensityAnalyzer()
def get_sentiment_score(text):
"""
Analyzes a piece of text and returns its sentiment score.
The 'compound' score is a single metric that summarizes the sentiment.
It ranges from -1 (most negative) to +1 (most positive).
"""
# The polarity_scores() method returns a dictionary with 'neg', 'neu', 'pos', and 'compound' scores.
# We are most interested in the 'compound' score.
scores = _analyzer.polarity_scores(text)
return scores['compound']

11
rstat_tool/setup_nltk.py Normal file
View File

@@ -0,0 +1,11 @@
import nltk
# This will download the 'vader_lexicon' dataset
# It only needs to be run once
try:
nltk.data.find('sentiment/vader_lexicon.zip')
print("VADER lexicon is already downloaded.")
except LookupError:
print("Downloading VADER lexicon...")
nltk.download('vader_lexicon')
print("Download complete.")

View File

@@ -0,0 +1,65 @@
# ticker_extractor.py
import re
# A set of common English words and acronyms that look like stock tickers.
# This helps reduce false positives.
COMMON_WORDS_BLACKLIST = {
"401K", "403B", "457B", "ABOVE", "AI", "ALL", "ALPHA", "AMA", "AMEX",
"AND", "ANY", "AR", "ARE", "AROUND", "ASSET", "AT", "ATH", "ATL", "AUD",
"BE", "BEAR", "BELOW", "BETA", "BIG", "BIS", "BLEND", "BOE", "BOJ",
"BOND", "BRB", "BRL", "BTC", "BTW", "BULL", "BUT", "BUY", "BUZZ", "CAD",
"CAN", "CEO", "CFO", "CHF", "CIA", "CNY", "COME", "COST", "COULD", "CPI",
"CTB", "CTO", "CYCLE", "CZK", "DAO", "DATE", "DAX", "DAY", "DCA", "DD",
"DEBT", "DIA", "DIV", "DJIA", "DKK", "DM", "DO", "DOGE", "DR", "EACH",
"EARLY", "EARN", "ECB", "EDGAR", "EDIT", "EPS", "ESG", "ETF", "ETH",
"EU", "EUR", "EV", "EVERY", "FAQ", "FAR", "FAST", "FBI", "FDA", "FIHTX",
"FINRA", "FINT", "FINTX", "FINTY", "FOMC", "FOMO", "FOR", "FRAUD",
"FRG", "FSPSX", "FTSE", "FUD", "FULL", "FUND", "FXAIX", "FXIAX", "FY",
"FYI", "FZROX", "GAIN", "GDP", "GET", "GBP", "GO", "GOAL", "GPU", "GRAB",
"GTG", "HAS", "HAVE", "HATE", "HEAR", "HEDGE", "HINT", "HKD", "HODL",
"HOLD", "HOUR", "HSA", "HUF", "IMHO", "IMO", "IN", "INR", "IPO", "IRA",
"IRS", "IS", "ISM", "IT", "IV", "IVV", "IWM", "JPY", "JUST", "KNOW",
"KRW", "LARGE", "LAST", "LATE", "LATER", "LBO", "LIKE", "LMAO", "LOL",
"LONG", "LOOK", "LOSS", "LOVE", "M&A", "MAKE", "MAX", "MC", "MID", "MIGHT",
"MIN", "ML", "MOASS", "MONTH", "MUST", "MXN", "MY", "NATO", "NEAR",
"NEED", "NEW", "NEXT", "NFA", "NFT", "NGMI", "NIGHT", "NO", "NOK", "NONE",
"NOT", "NOW", "NSA", "NULL", "NZD", "NYSE", "OF", "OK", "OLD", "ON",
"OP", "OR", "OTC", "OUGHT", "OUT", "OVER", "PE", "PEAK", "PEG",
"PLAN", "PLN", "PMI", "PPI", "PRICE", "PROFIT", "PSA", "Q1", "Q2", "Q3",
"Q4", "QQQ", "RBA", "RBNZ", "REIT", "REKT", "RH", "RISK", "ROE", "ROFL",
"ROI", "ROTH", "RSD", "RUB", "SAVE", "SCALP", "SCAM", "SCHB", "SEC",
"SEE", "SEK", "SELL", "SEP", "SGD", "SHALL", "SHARE", "SHORT", "SO",
"SOME", "SOON", "SPAC", "SPEND", "SPLG", "SPX", "SPY", "STILL", "STOCK",
"SWING", "TAKE", "TERM", "THE", "THINK", "THIS", "TIME", "TL", "TL;DR",
"TLDR", "TODAY", "TO", "TOTAL", "TRADE", "TREND", "TRUE", "TRY", "TTYL",
"TWO", "UK", "UNDER", "UP", "US", "USA", "USD", "VTI", "VALUE", "VOO",
"VR", "WAGMI", "WANT", "WATCH", "WAY", "WE", "WEB3", "WEEK", "WHO",
"WHY", "WILL", "WORTH", "WOULD", "WSB", "YET", "YIELD", "YOLO", "YOU",
"ZAR",
"KARMA", "OTM", "ITM", "ATM", "JPOW", "OPEN", "CLOSE", "HIGH", "LOW",
"RE", "BS", "ASAP", "RULE", "REAL", "LIMIT", "STOP", "END", "START", "BOTS",
"UTC", "AH", "PM", "PR", "GMT", "EST", "CST", "PST", "BST", "AEDT", "AEST",
"CET", "CEST", "EDT", "IST", "JST", "MSK", "PDT", "PST", "YES", "NO", "OWN",
"BOMB",
}
def extract_tickers(text):
"""
Extracts potential stock tickers from a given piece of text.
A ticker is identified as a 1-5 character uppercase word, or a word prefixed with $.
"""
# Regex to find potential tickers:
# 1. Words prefixed with $: $AAPL, $TSLA
# 2. All-caps words between 1 and 5 characters: GME, AMC
ticker_regex = r"\$[A-Z]{1,5}\b|\b[A-Z]{2,5}\b"
potential_tickers = re.findall(ticker_regex, text)
# Filter out common words and remove the '$' prefix
tickers = []
for ticker in potential_tickers:
cleaned_ticker = ticker.replace("$", "").upper()
if cleaned_ticker not in COMMON_WORDS_BLACKLIST:
tickers.append(cleaned_ticker)
return tickers

23
setup.py Normal file
View File

@@ -0,0 +1,23 @@
# setup.py
from setuptools import setup, find_packages
with open('requirements.txt') as f:
requirements = f.read().splitlines()
setup(
name='reddit-stock-analyzer',
version='0.0.1',
author='Pål-Kristian Hamre',
author_email='its@pkhamre.com',
description='A command-line tool to analyze stock ticker mentions on Reddit.',
# This now correctly finds your 'rstat_tool' package
packages=find_packages(),
install_requires=requirements,
entry_points={
'console_scripts': [
# The path is now 'package_name.module_name:function_name'
'rstat=rstat_tool.main:main',
],
},
)