Modularized the tool.

This commit is contained in:
2025-07-21 15:49:15 +02:00
parent 03e6e56a35
commit 71890d1a57
8 changed files with 426 additions and 0 deletions

158
rstat_tool/database.py Normal file
View File

@@ -0,0 +1,158 @@
# rstat_tool/database.py
import sqlite3
import time
# --- IMPORT ADDED BACK IN ---
from .ticker_extractor import COMMON_WORDS_BLACKLIST
DB_FILE = "reddit_stocks.db"
def get_db_connection():
"""Establishes a connection to the SQLite database."""
conn = sqlite3.connect(DB_FILE)
conn.row_factory = sqlite3.Row
return conn
def initialize_db():
# ... (This function is unchanged)
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS tickers (
id INTEGER PRIMARY KEY AUTOINCREMENT,
symbol TEXT NOT NULL UNIQUE,
market_cap INTEGER,
last_updated INTEGER
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS subreddits (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS mentions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
ticker_id INTEGER,
subreddit_id INTEGER,
post_id TEXT NOT NULL,
mention_timestamp INTEGER NOT NULL,
sentiment_score REAL,
FOREIGN KEY (ticker_id) REFERENCES tickers (id),
FOREIGN KEY (subreddit_id) REFERENCES subreddits (id),
UNIQUE(ticker_id, post_id, sentiment_score)
)
""")
conn.commit()
conn.close()
print("Database initialized successfully.")
# --- CLEANUP FUNCTION ADDED BACK IN ---
def clean_stale_tickers():
"""
Removes tickers and their associated mentions from the database
if the ticker symbol exists in the COMMON_WORDS_BLACKLIST.
"""
print("\n--- Cleaning Stale Tickers from Database ---")
conn = get_db_connection()
cursor = conn.cursor()
# Find ticker IDs that match the blacklist
placeholders = ','.join('?' for _ in COMMON_WORDS_BLACKLIST)
query = f"SELECT id, symbol FROM tickers WHERE symbol IN ({placeholders})"
cursor.execute(query, tuple(COMMON_WORDS_BLACKLIST))
stale_tickers = cursor.fetchall()
if not stale_tickers:
print("No stale tickers to clean.")
conn.close()
return
for ticker in stale_tickers:
ticker_id = ticker['id']
ticker_symbol = ticker['symbol']
print(f"Removing stale ticker '{ticker_symbol}' (ID: {ticker_id})...")
# 1. Delete all mentions associated with this ticker ID
cursor.execute("DELETE FROM mentions WHERE ticker_id = ?", (ticker_id,))
# 2. Delete the ticker itself
cursor.execute("DELETE FROM tickers WHERE id = ?", (ticker_id,))
deleted_count = conn.total_changes
conn.commit()
conn.close()
print(f"Cleanup complete. Removed {deleted_count} records.")
def add_mention(conn, ticker_id, subreddit_id, post_id, timestamp, sentiment):
# ... (This function is unchanged)
cursor = conn.cursor()
try:
cursor.execute(
"INSERT INTO mentions (ticker_id, subreddit_id, post_id, mention_timestamp, sentiment_score) VALUES (?, ?, ?, ?, ?)",
(ticker_id, subreddit_id, post_id, timestamp, sentiment)
)
conn.commit()
except sqlite3.IntegrityError:
pass
# ... (get_or_create_entity, update_ticker_market_cap, get_ticker_info are unchanged)
def get_or_create_entity(conn, table_name, column_name, value):
# ...
cursor = conn.cursor()
cursor.execute(f"SELECT id FROM {table_name} WHERE {column_name} = ?", (value,))
result = cursor.fetchone()
if result: return result['id']
else:
cursor.execute(f"INSERT INTO {table_name} ({column_name}) VALUES (?)", (value,))
conn.commit()
return cursor.lastrowid
def update_ticker_market_cap(conn, ticker_id, market_cap):
# ...
cursor = conn.cursor()
current_timestamp = int(time.time())
cursor.execute("UPDATE tickers SET market_cap = ?, last_updated = ? WHERE id = ?", (market_cap, current_timestamp, ticker_id))
conn.commit()
def get_ticker_info(conn, ticker_id):
# ...
cursor = conn.cursor()
cursor.execute("SELECT * FROM tickers WHERE id = ?", (ticker_id,))
return cursor.fetchone()
def generate_summary_report(limit=20):
# ... (This function is unchanged)
print(f"\n--- Top {limit} Tickers by Mention Count ---")
conn = get_db_connection()
cursor = conn.cursor()
query = """
SELECT
t.symbol,
t.market_cap,
COUNT(m.id) as mention_count,
SUM(CASE WHEN m.sentiment_score > 0.1 THEN 1 ELSE 0 END) as bullish_mentions,
SUM(CASE WHEN m.sentiment_score < -0.1 THEN 1 ELSE 0 END) as bearish_mentions,
SUM(CASE WHEN m.sentiment_score BETWEEN -0.1 AND 0.1 THEN 1 ELSE 0 END) as neutral_mentions
FROM mentions m
JOIN tickers t ON m.ticker_id = t.id
GROUP BY t.symbol, t.market_cap
ORDER BY mention_count DESC
LIMIT ?;
"""
results = cursor.execute(query, (limit,)).fetchall()
header = f"{'Ticker':<8} | {'Mentions':<8} | {'Bullish':<8} | {'Bearish':<8} | {'Neutral':<8} | {'Market Cap':<15}"
print(header)
print("-" * len(header))
for row in results:
market_cap_str = "N/A"
if row['market_cap'] and row['market_cap'] > 0:
mc = row['market_cap']
if mc >= 1e12: market_cap_str = f"${mc/1e12:.2f}T"
elif mc >= 1e9: market_cap_str = f"${mc/1e9:.2f}B"
else: market_cap_str = f"${mc/1e6:.2f}M"
print(f"{row['symbol']:<8} | {row['mention_count']:<8} | {row['bullish_mentions']:<8} | {row['bearish_mentions']:<8} | {row['neutral_mentions']:<8} | {market_cap_str:<15}")
conn.close()